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ABOUT SYMPOSIUM 

In 2009, the first edition of the Symposium on Generating Functions of Special Numbers and 

Polynomials and their Applications (GFSNP) was held in Rethymno, Crete Island, Greece, and 

it has been held regularly since 2009 as a minisymposia, in the partnership with the International 

Conference of Numerical Analysis and Applied Mathematics (ICNAAM). These all mini-

symposiums were organized by Professor Dr. Yilmaz Simsek, and over the years, he gave the 

opportunity to the scientists working on generating functions for presenting their works. From 

the first day it was organized until today, this symposium series has brought together the 

researchers, who work on generating functions and related areas, from all over the world. Last 

year, in 2023, the 13th of the GFSNP symposium series was held in, Antalya, TURKEY, with 

dedication to Professor Dr. Yilmaz Simsek on the occasion of his 60th anniversary. 

As for the 14th Symposium on Generating Functions of Special Numbers and Polynomials and 

their Applications (GFSNP 2024), under the organization of Professor Yilmaz Simsek, it was 

held at Sherwood Exclusive Lara Hotel in Antalya, TURKEY, for four days from January 18 

to January 21, 2024, by dedicating this wonderful symposium to the respected mathematician 

Professor Dr. Taekyun Kim on the occasion of his 60th anniversary. 

The aim of the symposium GFSNP 2024 was to bring together leading scientists of the pure 

and applied mathematics and related areas to present their research, to exchange new ideas, to 

discuss challenging issues, to foster future collaborations and to interact with each other. 

The symposium GFSNP 2024 took place in a hybrid form with both Physical and Virtual 

(Online) participations, for four days from January 18 to January 21, 2024. There were totally 

66 participants from 10 different countries [Algeria, China, France, India, Iran, Morocco, 

Northern Cyprus, South Korea, Turkey, USA]. Among others, 3 of these participants attended 

the symposium as a listener, and 1 participant attended the symposium with a joint paper 

accompanied by one of the other participants. In addition, there were a total of 6 participants 

who made two presentations among others. 

During the four days of GFSNP 2024, its participants totally made 66 presentations, and these 

contributions are respectively affiliated with 9 different countries [Algeria (4), China (5), 

France (1), India (3), Iran (1), Morocco (1), Northern Cyprus (6), South Korea (18), Turkey 

(27)]. 



In addition to a great number of excellent presentations, there was three listener participants 

who have supported our symposium by their presence. 

As its name suggests, the theme of the symposium GFSNP 2024 is “Generating Functions of 

Special Numbers and Polynomials and their Applications”. Considering that the generating 

functions has found a field of application in many different disciplines such as Algebra, 

Combinatorics, Number Theory, Analytic Number Theory, Graph Theory, Analysis of 

Algorithms, Mathematical Physics, Bio-informatics, Mathematical Chemistry, Mathematical 

Biology, Genetics, Management, Economics, Probability & Statistics, Engineering and their 

applications, we can easily state that the contents of oral and poster presentations of this 

symposium are mainly related to not only the generating functions, but also their applications 

in various fields of mathematics and related areas. 

In this context, the contents of oral and poster presentations of this symposium were mainly 

related to not only the above areas, but also their applications in various fields of mathematics 

and related areas.  

Further details about the symposium GFSNP 2024 are given as follows: 
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Foreword written by Professor Taekyun Kim

It delivers me tremendous pleasure to write this foreword for the “14th Symposium
on Generating Functions of Special Numbers and Polynomials and their Applications
(GFSNP 2024)” dedicated to my 60th birthday.

Perhaps the most special of these is the symposium dedicated to the age of researchers
in mathematics or science.

I received my doctorate in 1994, studied number theory and special functions, and
joined the Jangjeon Mathematics Society in 1996 to conduct research in this field.

In the study of number theory, the generating function is usefully used to derive useful
interesting identity.

Recently, I performed various studies using generating functions of special functions.
In particular, special properties related to probability were studied.

Since then, we know well that generating functions have been used in almost all fields
of mathematics, Probability, Quantum Physics, Differential Equations Theory, other
applied sciences, etc.

At this symposium, it was found that many researchers were using generating func-
tions to study in various areas, and it was seen as a very interesting phenomenon.

I look forward to the endless and further development of these symposiums and I
would like to thank my friend Professor Yilmaz Simsek and all organizing committee.

In addition, I would like to express my sincere gratitude to all participants and speak-
ers.

Professor Taekyun Kim

Department of Mathematics, Kwangwoon University,

Seoul, 01897 Republic of Korea (South Korea)

E-mail: tkkim@kw.ac.kr

Website(s): https://www.kw.ac.kr/en/univ/science01 2.jsp

https://www.researchgate.net/profile/Taekyun-Kim-3



Foreword written by the Editors

With our most sincere respects to Professor Taekyun Kim, we are honored to write this
foreword for the Proceedings of the 14th Symposium on the Generation and Applications
of Functions of Special Numbers and Polynomials (GFSNP 2024), dedicated to his 60th
birthday.

Professor Taekyun Kim completed his doctoral thesis, titled “On the q-analogue of
p-adic log-gamma and L-function”, under the supervision of Professor Katsumi Shi-
ratani at Kyushu University Japan between the 4th month of 1992 and the 3rd month of
1994. Since than he has continued to make invaluable contributions to number theory,
p-adic analysis, and other areas of mathematics. On 6 January 1996, he founded the
Jangjeon Mathematical Society: (https://www.jangjeonopen.or.kr). After that he
became Founding Editor and Editors-in-Chief of the following journals:

� Advanced Studies in Contemporary Mathematics

� Proceeding of the Jangjeon mathematical Society.

As for his other scientific activities, he has more than 700 papers which are published
in SCI/SCI-E/Scopus indexed Journals. He has received many awards. Furthermore, he
has many Editorship and Associate Editorship positions in SCI/SCI-E/Scopus indexed
Journals.

As for the symposium on “Generating Functions of Special Numbers and Polynomials
and their Applications (GFSNP)”, let’s give a brief history of the symposium. The 1st
GFSNP symposium was first held in 2009 in Rethymno, Crete Island, Greece, by “Prof.
Dr. Yılmaz Şimşek” in partnership with the organizer of ICNAAM, under the name of
mini symposium. Later, despite the Coronavirus pandemic and other major earthquake
disasters in our country, GFSNP continued to be held regularly every year by “Prof. Dr.
Yılmaz Şimşek” and will continue to do so. Because today “Prof. Dr. Yılmaz Şimşek”
has a very strong team. Thanks to this team, the GFSNP Symposium has taken its place
among the world’s respected symposiums and will continue to produce historical book
series with ISBN numbers every year. Therefore, “Prof. Dr. Yılmaz Şimşek” would like
to sincerely thank the following GFSNP’s Editorial Board Team:

� “Prof. Dr. Mustafa Alkan”, “Assoc. Prof. Dr. Irem Kucukoglu”, “Assoc. Prof.
Dr. Ortaç Öneş” and “Assoc. Prof. Dr. Neslihan Kilar”.

And also “Prof. Dr. Yılmaz Şimşek” would like to express his sincere gratitude to
the following organizing committee members:

� “Assoc. Prof. Dr. Ayşe Ceylan Yilmaz”, “Dr. Buket Simsek”, “Asst. Prof. Dr.
Rahime Dere”, “Assoc. Prof. Dr. Erkan Agyuz”, “Assoc. Prof. Dr. Elif Cetin”,
“Dr. Damla Gün”, “Dr. Busra Al”, “Dr. Elif Sukruoglu”, “Ezgi Polat”, “Elif
Bozo”.



Thanks to these members of our team, over the years, GFSNP symposiums have
expanded and given the opportunity to scientists working not only on generating func-
tions and their applications, but also on the applications of these topics to all areas of
mathematics, probability and statistics applications, engineering applications, and other
branches of science, to present their work.

This symposium series, which covers the above topics since the first day it was orga-
nized, continues with a wide range of activities, expanding to bring together researchers
working in relevant fields from all over the world.

As its name suggests, the topics of the symposium GFSNP are “Generating Func-
tions of Special Numbers and Polynomials and Their Applications”. Considering that
generating functions find application in many different disciplines, such as Algebra, Com-
binatorics, Number Theory, Analytical Number Theory, Graph Theory, Analysis of Algo-
rithms, Mathematical Physics, Bio-informatics, Mathematical Chemistry, Mathematical
Biology, Genetics, Management, Economics, Probability & Statistics, Engineering, the
contents of the oral and poster presentations of this symposium are mainly concerned
with not only generating functions, but also their applications in various fields of math-
ematics and related fields.

Professor Taekyun Kim, who is the world’s leading scientist, has been working to-
gether with Professor Yılmaz Şimşek since 2004. Therefore, this year the symposium
GFSNP 2024 was organized, under the leadership of Professor Şimşek, with the theme
of dedication to Professor Kim’s 60th birthday.

As for the brief description about the contents of “Proceedings Book of the 14th
the Symposium on Generating Functions of Special Numbers and Polynomials and their
Applications (GFSNP 2024)” is given as follows:

The first section of the Proceedings Book of GFSNP 2024 includes the Ceremony talk
of Professor Taekyun Kim, Foreword written by Professor Taekyun Kim, the Foreword
written by the Editors, A brief biography of Professor Taekyun Kim, and some infor-
mation about the symposium series GFSNP including the name of invited speakers, the
name of committee members.

The rest of this book includes all the contributed talks and their related manuscripts.
In this regard, we would like to thank to all speakers and participants for their valu-

able contributions. We also express our sincere thanks to all members of the scientific
committee and all members of the organizing committee because of their efforts to the
success of this symposium and this book.

Once again, we would like to express that we are very happy that we celebrated the
60th birthday of very valuable and distinguished scientist Professor Taekyun Kim, and
we also dedicate this book to his 60th birthday. For Professor Taekyun Kim’s great
contribution to mathematics, we would like to present our endless respect to him and to
congratulate his 60th birthday with our best wishes one again. We wish the rest of his
life to be happy, fruitful, success and he have many healthy years to spend with his loved
ones.



We would also like to sincerely thank the following invited speakers who contributed
to the realization of this symposium:

� Professor Abdelmejid Bayad (Université d’Evry, France),

� Professor Ismail Naci Cangul (Bursa Uludag University, Turkey),

� Professor Veerabhadraiah Lokesha (Vijayanagara Sri Krishnadevaraya University,
India).

Finally, we would also like to express our sincere appreciation to everyone who con-
tributed to the realization of this symposium.

Editors of the Proceedings Book of GFSNP 2024

Prof. Dr. Yilmaz Simsek

Prof. Dr. Mustafa Alkan

Assoc. Prof. Dr. Irem Kucukoglu

Assoc. Prof. Dr. Ortaç Öneş

Assoc. Prof. Dr. Neslihan Kilar

E-mail: gfsnp.symposia@gmail.com

Website: https://gfsnpsymposia.com



I. Brief Biography of Professor Taekyun Kim

Professor Taekyun Kim was born in Hapcheon, South Korea. He is married with
Kyoung Young Lee and has two sons: Daehee and Changhee. There are many num-
ber and polynomial families in the literature with these names (Daehee and Changhee
number and polynomials, etc.). As for his academic life, his PhD advisor is Prof. Dr.
Katsumi Shiratani and Prof. Dr. Taekyun Kim received his PhD degree (in Number
Theory in Mathematics) with Thesis Title: On the q-analogue of p-adic log-gamma and
L-functions) at Kyushu University, Fukuoka of Japan between 1992–1994. Afterwards,
Professor Kim’s academic carrier was started in 1994 as a Researcher in Topology and
Geometry Research Center at Kyungpook National University, and he has been work-
ing as Professor at Kwangwoon University since 2008. His research interests are “p-adic
analysis, q-series, Special numbers and polynomials, Special Functions, Generating Func-
tions, Special sums, Dedekind and Hardy Sums, Umbral Algebra, Umbral Analysis, etc.”.
According to the data in Google Scholar, he has publications more that 1000 and his
works have received around 17768 citations with h-index 59 until now. In addition
to writing hundreds of articles and book chapters in distinguished international jour-
nals of mathematical and engineering sciences, he has memberships of Editorial Board
of many international journals. He has been invited to many scientific activities such as
international conferences, seminars, visiting professor. He is referee and editor of many
mathematical journals. His works contributed to many areas of mathematics. he has
more than 700 papers which are published in SCI/SCI-E/Scopus indexed Journals. He
has received many awards. Furthermore, he has many Editorship and Associate Editor-
ship positions in SCI/SCI-E/Scopus indexed Journals.

In addition, on 6 January 1996, he founded the Jangjeon Mathematical Society:
(https://www.jangjeonopen.or.kr). After that he became Founding Editor and Editor-
in-Chief of the following journals:

� Advanced Studies in Contemporary Mathematics

� Proceeding of the Jangjeon mathematical Society.

II. Other Details

Education:

� 1991 – 1994: Kyushu University, Fukuoka, Japan (Doctor of Science, Number
Theory in Mathematics).

� 1989 – 1991: Researcher student in Kyushu University, Fukuoka, Japan.

� 1987 – 1989: Kyungpook National University (Master of Science, Analysis in Math-
ematics).



� 1983 – 1987: Kyungpook National University (Bachelor).

Career:

� 2008/03/01 – Present: Professor, Department of Mathematics, Kwangwoon Uni-
versity, Seoul, Korea

� 2019/09/01 – 2026/08/30: Visiting Professor, Xi’an Technological University.

� 2015/09/01 – 2019/08/31: Chair Professor, Department of Mathematics, Tianjin
Polytechnic University, Tianjin, China

� 2006/08/01 – 2008/02/29: Professor (BK), Department of Electrical Engineering
and Computer Sciences, Kyungpook National University, Taegu, Korea

� 2001/04/12 – 2006/07/31: Research Professor, Department of Mathematics Edu-
cation, Kongju National University, Kongju, Korea

� 1999/06/01 – 2000/12/31, Vistor, CECM, Simon Fraser University, Vancouver,
Canada

� 1999/01/01 – 2000/02/29, Teacher( Math.), Korean Minjok Leadership Academy

� 1997/03/01 – 2007/02/28, Instructor, Republic of Korea Naval Academy

� 1994/04/01 – 1998/08/23, Instructor and Researcher, TGRC, Kyungpook National
University, Taegu, Korea

� 2010/04/01 – 2012/03/31: The 10th Korea-Japan Basic Science Exchange Commit-
tee, Korea Research Foundation “The 10th Korea-Japan Basic Science Exchange
Mathematics and Physics Division”.

Editorship and Associate Editorship Duties:

� 2014/11/28 – 2021/12/31: Associate editor, Advances in Difference Equations

� 1999/01/01 – Present: Editor-in-chief, Advanced Studies in Contemporary Mathe-
matics

� 2007/06/01 – Present: Editor-in-chief, Proceeding of the Jangjeon Mathematical
Society

� 1996/06/01: Founder of Jangjeon Mathematical Society

Awards:

� 2013/05/20: Kwangwoon University Academy Award.

� 2014/12/04: Science Minister’s Prize “Knowledge Creation Grand Prize”.



� 2016/12: The world’s most influential researcher (2016), Clarivate Analytics.

� 2017/11/27: 2017’s Highly Cited Researcher, Clarivate Analytics
(see, for details, https://clarivate.com/hcr/2017-researchers-list/#f
reeText%3DKim%2C%20taekyun).

� 2009/03: New hot paper-2009, Thomson Reuters
(see, for details, http://archive.sciencewatch.com/dr/nhp/2009/09mayn
hp/09maynhpKim).

Further details about Professor Kim’s professional and scholarly achievements, as well
as honors and awards, can be found at the following websites:

� https://www.kw.ac.kr/en/univ/science01 2.jsp,

� https://www.researchgate.net/profile/Taekyun-Kim-3.



Ceremony Talk of Professor Taekyun Kim

Ladies and gentlemen,
Dear colleagues,
I would like to express my infinite gratitude to Professor Simsek and all committee

members who prepared and held the international symposiumin connection with my
60th birthday, as well as to everyone involved in the symposium. I am also extremely
happy to be participating in the international symposium held in Antalya, Turkey.

Additionally, I look forward to seeing you all again at the international academic
conference held at Kwangwoon University in Korea this August. I’m not very expressive,
so I can’t say a long greeting, but it’s a short sentence, but I hope that my infinite
gratitude is expressed.

This year is the year of the blue dragon, the same year I was born. I end my greetings
by wishing God’s blessings on all attendees this year, the Year of the Blue Dragon.

Thank you.

Professor Taekyun Kim

Department of Mathematics, Kwangwoon University,

Seoul, 01897 Republic of Korea (South Korea)

E-mail: tkkim@kw.ac.kr

Website(s): https://www.kw.ac.kr/en/univ/science01 2.jsp

https://www.researchgate.net/profile/Taekyun-Kim-3
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Some results on degenerate Fubini and
degenerate Bell polynomials

Taekyun Kim

The aim of this paper is to further study some properties and identities on
the degenerate Fubini and the degenerate Bell polynomials which are degenerate
versions of the Fubini and the Bell polynomials, respectively. Especially, we find
several expressions for the generating function of the sum of the values of the
generalized falling factorials at positive consecutive integers.
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On the Jacobi forms and applications to
theory of trigonometric sums

Abdelmejid Bayad

The Jacobi forms are a cross between elliptic functions and modular forms
in one variable. Specifically, a Jacobi form on SL2 (Z) is defined to be a holo-
morphic function

φ : H× C→ C (H is the upper half-plane)

satisfying the two transformation equations

φ

(
aτ + b

cτ + b
,

z

cτ + d

)
= (cτ + d)k e

2πimcz2

cτ+d φ (τ, z)

φ (τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ (τ, z) ,

where
(
a b
c d

)
∈ SL2 (Z) and (λ, µ) ∈ Z2, and having a Fourier expansion of

the form

φ (τ, z)−
∞∑
n=0

∑
r ∈ Z

r2 ≤ 4mn

c (n, r) e2πi(nτ+rz)

k (resp. m) is called the weight (resp. index) of φ.
To a complex lattice L in C, one can attach a Jacobi form denoted by

DL (z, ϕ). This Jacobi form was studied extensively in [1]- [4], [6, 7]. Bayad and
Gilles proved a distribution formula for DL (z, ϕ). Let Λ be a complex sublattice
of C such that L ⊂ Λ. We have

DΛ (z, ϕ) =
∑
t∈Λ/L

e (−EΛ (t, nϕ))DL (z + t, nϕ) , (Distribution identity)

where n = [Λ : L]. This identity is used to obtain results concerning quadratic
Stickelberger elements (see [5, 6]).

In this talk, we prove a generalized distribution identity for the powers of
DL (z, ϕ). One of the applications of this identity is to prove some new identities
on the sums of powers of some trigonometric functions.

For instance, we show that

πn

sin (πnz)
=

n−1∑
k=0

(−1)k
π

sin
(
πz + π k

n

) for n = 3, 5, 7, . . . , (1)

and, we recover the well-known formula

πn cot (πnz) =

n−1∑
k=0

π cot

(
π

(
z +

k

n

))
, for any n ≥ 1. (2)

These two identities are straightforward applications of the distribution formula
for the Jacobi form DL (z, ϕ).

We prove a generalized distribution identity for the powers for the powers
of the Jacobi forms DL (z, ϕ), with applications to the theory of trigonometric
sums. For more details see [3].
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On some new properties of omega invariant
Ismail Naci Cangul

We shall give some recent results on the number of realizations of a given
degree sequence by means of omega invariant and also present some new property
of omega invariant.

2020 MSC: 05C07, 05C10, 05C30

Keywords: Degree sequence, Realizability, Omega invariant, Molecular graph

Introduction
In a tree, the number a1 of the leaves (pendant vertices) is given by

a1 = a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ + 2.

Delen and Cangul rephrased the above formula as

a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1 = −2

and realized that for cyclic graphs, the left hand side of the above formula takes
different values other than -2. These values are all even integers. To generalize the
above formula so that it is also valid for the cyclic graphs, they defined the following
invariant:

Definition 1. Let D =
{

1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
}
be a set which also is the degree

sequence of a graph G. The Ω(G) of the graph G is defined only in terms of the degree
sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1

=

∆∑
i=1

(i− 2)ai.

Since it was defined in 2018, over 60 papers are published on omega invariant and
its properties. In [2], it was shown that for any graph G,

Ω(G) = 2(m− n).

Hence for all graphs G, Ω(G) is even. Therefore for a randomly given set D of non-
negative integers, if Ω(D) happens to be odd, then D is not realizable. Also the
necessary and sufficient condition for a simple connected planar graph G to be a tree
is shown to be Ω(G) = −2.

Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be realizable as a graph G with c com-
ponents. The number r of closed regions of G is given by r = Ω(G)

2 + c in [3]. In
the extremal problems, it is useful to know the minimum and maximum values of
some quantity. When the number of components of all the realizations of a given
degree sequence are in question, we have an exact lower bound for the number of
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components c ≥ −Ω(G)
2 . This is clearly equivalent to the condition c ≥ n−m. In [3],

the maximum number of components of any realization of D might have is given by

cmax =
∑

di even

ai +
1

2

∑
di odd

ai.

Vertex and edge deletion are two useful operations on graphs. Using them succes-
sively, we can study some required property of a graph in terms of the same properties
of some smaller graphs obtained by removing vertices or edges. We now give a formula
which gives the amount of the change in omega invariant when a vertex is deleted
from a graph:

Theorem 2. Let G be a simple graph. Let v be a vertex of G of degree dv and let
G− v be the graph obtained by removing the vertex v from G. Then

Ω(G− v) = Ω(G)− 2(dGv − 1).

Proof. Recall that Ω(G) = 2(m − n) for a graph G of order n and size m. Let
us denote by n′ and m′ the order and size of the graph G − v, respectively. Then
Ω(G−v) = 2(m′−n′). Once a vertex v is deleted, the number of vertices is reduced by
1 and the number of edges is reduced by dGv. Therefore m′ = m−dv and n′ = n−1.
Hence

Ω(G− v) = 2(m′ − n′)
= 2(m− dv − (n− 1))
= 2(m− n) + 2(1− dGv)
= Ω(G)− 2(dGv − 1).

As omega invariant is closely related to the cyclomatic number of the graph which
is the number of non-overlapping cycles, the following result is an immediate appli-
cation of Theorem 2:

Corollary 3. Let G be a simple graph. Let v be a pendant vertex of G of degree
dGv = 1 and let G− v be the graph obtained by removing the vertex v from G. Then

Ω(G− v) = Ω(G).

Proof. This is a special case of Theorem 2 where dGv = 1.

An alternative proof can be given as follows: When we delete a pendant vertex v
from G, the cyclomatic number remains unchanged. So the result is clear.
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On the number of realizations of some degree
sequences

Ismail Naci Cangul

The number of realizations of a given degree sequence is still an open prob-
lem. We shall give some new partial results on this realizability problem by
means of recently defined and intensively studied omega invariant and its prop-
erties. We shall consider the simple, connected and unicyclic realizations of a
given degree sequence with maximum cycle length 4 and also search for the
simple, connected and unicyclic realizations with the unique cycle is a triangle.
The total number of all these realizations in all possible cases are formulized.

2020 MSC: 05C07, 05C10, 05C30

Keywords: Degree sequence, Realizability, Omega invariant, Unicyclic graph

Introduction
All graphs we shall consider will be simple and connected with n vertices and m

edges. Delen and Cangul in [2] defined the following invariant:

Definition 1. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be a set which also is the degree
sequence of a graph G. The Ω(G) of the graph G is defined only in terms of the degree
sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1 =

∆∑
i=1

(i− 2)ai.

Omega invariant gives topological and combinatorial information about a graph
or more importantly, about all realizations of a given degree sequence. These include
many common properties like the number of faces, number of cycles which is the
cyclomatic number, the possible lengths of the shortest and longest cycles which are
very important in Eulerian and Hamiltonian problems. The motivation behind that
idea was the formula for the number a1 of the leaves (pendant vertices) in a tree which
is given by a1 = a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ + 2. Delen and Cangul rephrased
the above formula as

a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1 = −2

and observed that the LHS of the above equality takes different values other than -2
for cyclic graphs. Such values are interestingly even integers always.

Since it was defined in 2018, many papers are published on omega invariant and its
properties, see e.g. [1, 4, 5], [7]- [13] for all these properties. In [2], it was shown that
for any graph G, Ω(G) = 2(m− n). Hence for all graphs G, Ω(G) is even. Therefore
for a randomly given set D of non-negative integers, if Ω(D) happens to be odd, then
D is not realizable. Also the necessary and sufficient condition for a simple connected
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planar graph G to be a tree is shown to be Ω(G) = −2.

Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be realizable as a graph G with c compo-
nents. The number r of regions of G is given by r = Ω(G)

2 + c in [3]. In the extremal
problems, it is aimed to know the minimum and maximum values of some property.
When the number of components of all the realizations of a given degree sequence are
in question, we have an exact lower bound for the number of components c ≥ −Ω(G)

2 .
This is quivalent to the condition c ≥ n−m. In [3], the maximum number of compo-

nents of any realization of D might have is given by cmax =
∑

di even

ai +
1

2

∑
di odd

ai.

It is well-known that a connected graph is unicyclic iff its omega invariant is zero.
This is equivalent to the condition that the size m and the order n of the graph G
are equal. The length of the unique cycle could be any integer between 1 and n− a1

where a1 is the number of pendant vertices in the graph. If the cycle has the maximum
length, then we get the situation where all the pendant vertices are adjacent to the
support vertices which are placed only on the unique cycle.

We give a partial result on the number of realizations of D:

Theorem 2. Let 2 ≤ i < j < k < l. Let D =
{

1(a), i(1), j(1), k(1), l(1)
}
. If Ω(D) = 0,

then all simple connected realizations are unicyclic and the maximum length of this
unique cycle is 4. Also the total number of all simple connected unicyclic realizations
(including those with a cycle of length 4 and those with a triangle) is 30 if i = 2 and
39 if i > 2.

Proof. As the realization is asked to be simple connected and unicyclic, we have
Ω(D) = 0. Hence we obtain a = i + j + k + l − 8. First let i = 2. Then the other
three support vertices will have degrees larger than 2. See Figure 1 for an illustration
of the proof in the case that i = 2, j = 3, k = 4 and l = 5. First of all, the four
integers i = 2, j, k and l could be placed on the 4-gon as in G1 in (4− 1)!/2 = 3 ways
as this number is the total number of cyclic permutations. For each of these three
placement, we have 3 + 2 + 2 + 2 = 9 simple connected unicyclic realizations which
have a triangle as the unique cycle. Note that all the graphs G2−G10 are obtained
from G1 by carrying one of the vertices on the 4-gon onto one of the pendant edges.
Indeed the vertex of degree 2 can be carried onto a pendant edge in 3 ways and each
of the other three non-pendant vertices can be carried onto a pendant edge in 2 ways.
As for each of the three 4-gonal realizations, we get 9 triangular realizations, the total
number of unicyclic realizations of D is 3× (1 + 9) = 30.
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Figure 1: Graph G1 as a simple connected unicyclic realization of D =
{1(6), 2(1), 3(1), 4(1), 5(1)} and all of its possible unicyclic realizations having a triangle

Let secondly i > 2. Then the other three support vertices will have degrees larger
than 2. Similarly to the first case, we obtain the total number of simple connected
and unicyclic realizations as 3× (1 + 12) = 39.

Open problem: The calculations made for simple connected unicyclic realiza-
tions with maximum cycle length 4 in this paper can be extended to any maximum
cycle length using similar methods. This could be an important step in finding a
formula for the number of all graphs with a fixed and given number of vertices.
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New-fangled information of VL indices
Veerabhadraiah Lokesha

Connectivity indices are grown in the dissimilar areas of discrete structures
as well as application in multidisciplinary aspects. More than ten thousand
new Topological indices are developed and many put in the ground connected
research activities are in bursting swing. The term Topological index is often
reserved for graph invariant in discrete structures. In the Mathematical and
Chemical literature, plenty of Topological Indices have been break new ground
and extensively studied. The concept of VL index was recently pioneered by
Deepika T in the Chemical graph theory. It is degree based Topological Indices
in 2021. Motivated from this Suvarna and et al (2022) introduced the VL tem-
perature index and status index for graph structures. These indices are well
correlated to butane structure. In the 2023 winter, Deepasree S K and et al
bring in the NVL index (neighbourhood VL indices). It is correction with hep-
tanes isomers. Topological indices are used for quantitative structure-activity
relationship (QSAR) and quantitative structure property relationship (QSPR)
studies. Here I will be articulate and brushing the up to date enlargement of
concatenation of VL indices.
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On the fermionic and deformic p-adic
q-integral formulas inspired by the papers of

Taekyun Kim
Yilmaz Simsek

This presentation is inspired by the papers of Taekyun Kim, who not only
constructed p-adic q-integrals involving the Volkenborn integral, but also give
explicit formulas for a novel collection of generating functions for the special
numbers and polynomials involving the Bernoulli numbers and polynomials,
Euler numbers and polynomials, Stirling numbers, Lah numbers, Peters num-
bers and polynomials, central factorial numbers, Daehee numbers and polynomi-
als, Changhee numbers and polynomials, Harmonic numbers, Fubini numbers,
Apostol-type numbers and polynomials, etc. The goal of this work is to sur-
vey formulas of p-adic q-integrals and their applications. Here we focus on the
following works:

• T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 19, 288-299,
2002.

• T. Kim, On the analogs of Euler numbers and polynomials associated with
p-adic q-integral on Zp at q = −1, J. Math. Anal. Appl. 331 (2), 779-792,
2007.

• Y. Simsek, Explicit formulas for p-adic integral: Approach to p-adic dis-
tributions and some families of special numbers and polynomials, Montes
Taurus J. Pure Appl. Math. 1 (1), 1-76, 2019.

We give not only many formulas, but also further remarks and observations.

2020 MSC: 11S80, 11B68, 05A15, 05A19, 11M35, 30C15, 26C05, 12D10, 33C45

Keywords: p-adic q-integrals, Volkenborn integral, Generating function, Special
functions, Bernoulli numbers and polynomials, Euler numbers and polynomials, Stir-
ling numbers, Daehee numbers and polynomials, Changhee numbers and polynomials,
Harmonic numbers, Combinatorial sums

Introduction, definitions and notations
Integral and derivative constitute the source of both science and today’s mod-

ern life. Integral and derivative are at the center of creating mathematical models
that directly enable the solution of real-world problems. Because area calculation,
length calculation, volume calculation, optimization problems, creation of differential
equations and finding their solutions etc. cannot be realized without integrals and
derivatives. For this reason, for hundreds of years, mathematicians, physicists and
other scientists have made very deep, effective and useful discoveries on derivative
and integral calculus and their applications, and they still continue to be effective.
Many different derivative concepts that are used effectively today have been defined.
Similarly, many different integral concepts, definitions and methods have been found
(and will continue to be found!). It will continue to be found because these definitions
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and concepts will not be the last stop of science. Integral and derivative concepts and
structures will forever continue to be the pioneer and main source of scientific devel-
opments, and they will also shed light on unraveling the unknown mysteries of the
universe.

The aim and motivation of this study is to summarize some types of integrals
used today and to raise awareness about their effects. Perhaps this will give some
researchers clues that will contribute to the development of their studies.

In particular, it is planned to present some applications of the p-adic integral(s)
concepts and important formulas on how generating functions for some (special) num-
bers, polynomials and functions are found with these integrals techniques.

Integral
Integral is a concept generally associated with the derivative, which is the con-

tinuous analogue of a sum used to calculate arc lengths, areas, volumes, and their
generalizations. The integral is also the most important mathematical model used to
find the area under a curve, determine displacement from velocity, and solve other
mathematical and physical problems. The concept of integral dates back to the 17th
century by German mathematician Gottfried Wilhelm Leibniz (1 July 1646-14 Novem-
ber 1716) and English mathematician Sir Isaac Newton (25 December 1642-20 March
1727). These two mathematicians independently discovered the concept of integral
using the fundamental theorem of mathematics. The development of the integral has
been continues until today. For this reason, it is inevitable to find new types of inte-
grals as well as new types of calculus based on needs (cf. [14, 79]). Some of them are
briefly given by name as follows:

The Darboux integral, which is defined by Darboux sums (restricted Riemann
sums) yet is equivalent to the Riemann integral. A function is Darboux-integrable if
and only if it is Riemann-integrable. Darboux integrals have the advantage of being
easier to define than Riemann integrals.

The Riemann–Stieltjes integral, an extension of the Riemann integral which
integrates with respect to a function as opposed to a variable. The Riemann-Stieltjes
integral is a generalization of the Riemann integral named after the German mathe-
maticians Bernhard Riemann (826-1866) and Thomas Joannes Stieltjes (1856-1894).
The Riemann-Stieltjes integral was first made by Thomas Joannes Stieltjes in 1894.
There are very important relationships between this integral and the Lebesgue in-
tegral. This integral has very important applications both in mathematics and in
physics, engineering and other branches of science, especially probability and statis-
tics.

The Lebesgue–Stieltjes integral, further developed by Johann Radon, which
generalizes both the Riemann-Stieltjes and Lebesgue integrals.

The Daniell integral, which subsumes the Lebesgue integral and Lebesgue-
Stieltjes integral without depending on measures.

The Cauchy’s integral formula, The Cauchy integral, named after the French-
man Augustin-Louis Cauchy (21 August 1789-23 May 1857), is central to complex
analysis. This integral allows finding results that are not valid in real analysis. It has
very effective and vital applications.

The Haar integral is defined by Hungarian mathematician Alfréd Haar (11
October 1885-16 March 1933). This integral used for integration on locally compact
topological groups, introduced by Alfréd Haar in 1933. This integral related to the
Haar measure, which assigns an invariant volume to subsets of locally compact topo-
logical groups, consequently defining an integral for functions on those groups. The
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Haar integral is also the general theory of Lebesgue integration. This integral define
an integral for all Borel measurable functions.

The Denjoy integral, the Luzin integral or the Perron integral:
This equation, defined by the French mathematician Arnaud Denjoy (5 January

1884-21 January 1974), is today known as the Denjoy integral, Luzin integral or
Perron integral. The Khinchin integral is a generalization of this integral, the Denjoy-
Khinchin integral, the generalized Denjoy integral, or the extended Denjoy integral.
The Denjoy integral is a generalization of the Riemann integral. Again, in some cases
the Denjoy integral is more general than the Lebesgue integral.

The Henstock–Kurzweil integral is also known as generalized Riemann integral or
the Gauge integral.

In particular, a function is Lebesgue integrable if and only if the function and its
absolute value are Henstock-Kurzweil integrable.

The Henstock-Kurzweil integral, variously is defined by Arnaud Denjoy, Oskar
Perron, and (most elegantly, as the gauge integral) Jaroslav Kurzweil, and developed
by Ralph Henstock.

The Itô integral and Stratonovich integral, which define integration with
respect to semimartingales such as Brownian motion. Itô (stochastic) integral on Itô
calculus is shortly described as follows: In 1995, Itô calculus, named after Kiyosi
Itô, who is Japanese mathematician (1915-2008), extends the methods of calculus to
stochastic processes such as Brownian motion, related to Wiener process, on filtered
probability space. This integration has important applications in mathematical fi-
nance and stochastic differential equations. The Itô stochastic integral is a stochastic
generalization of the Riemann–Stieltjes integral.

The Young integral, which is a kind of Riemann-Stieltjes integral with respect
to certain functions of unbounded variation.

The rough path integral, which is defined for functions equipped with some
additional rough path structure and generalizes stochastic integration against both
semimartingales and processes such as the fractional Brownian motion.

The Choquet integral, a subadditive or superadditive integral defined by French
mathematician Gustave Choquet in 1953.

The Bochner integral, an extension of the Lebesgue integral to a more general
class of functions. That is domain of the integrand of the Bochner integral is a Banach
space (cf. [79]).

The Motivic integration associated with arithmetic motivic measure,
in 1995, Maxim Kontsevich described Motivic integration, a concept in algebraic
geometry. Later, this integral was developed to different dimensions by Jan Denef and
François Loeser. Since its introduction, this integral has proven to be very useful in
various branches of algebraic geometry, especially birational geometry and singularity
theory. To put this roughly, motivational integration assigns to subsets of the arc
space of an algebraic variety a volume that lives in the Grothendieck ring of algebraic
varieties. The designation ‘motive’ reflects the fact that in motivational integration
the values are geometric in nature, unlike in ordinary integration where the values
are real numbers (cf. [74, 77]).

The p-adic integrals on Ultrametric Calculus, p-adic analysis:

Russian mathematician Kurt Hensel (1861-1941) defined p-adic numbers which are
related to coding theory and Diophantine equations. By the aid of p-adic numbers,
ultrametric calculus, p-adic analysis and other concepts can be constructed. p-adic
numbers have been many applications in Number Theory, Algebraic Geometry, Alge-
braic Topology, Mathematical Analysis, Mathematical Physics, String Theory, Field
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Theory, Stochastic Differential Equations on real Banach Spaces and Manifolds, p-
adic distributions, p-adic measure, p-adic integrals, p-adic L-function, p-adic Analysis
and Quantum Groups with Noncommutative Geometry, q-deformation of ordinary
analysis etc. (cf. [4]- [68]). In order to survey and investigate the Volkenborn in-
tegral, the fermionic p-q-adic integral and also (p-adic) distributions, we give some
notations and definitions.

Let N, Z, Q, R and C denote the set of natural numbers, the set of integers, the
set of rational numbers, the set of real numbers and the set of complex numbers,
respectively. Additionally, let N0 = N∪{0}.

Let x ∈ R. The rising factorial and the falling factorial are defined as follows,
respectively:

x(n) =

{
x(x+ 1)(x+ 2) . . . (x+ n− 1) if n ∈ N

1 if n = 0
(1)

and
x(n) =

{
x(x− 1)(x− 2) . . . (x− n+ 1) if n ∈ N

1 if n = 0.
(2)

For n ∈ N0, we have

(−1)n (−x)(n) = (x+ n− 1)(n) = x(n) (3)

(cf. [4]- [68]).

Generating functions for special numbers and polynomials
The Stirling numbers of the first kind S1(n, k) are defined by means of the following

generating function:

FS1(t, k) =
(log(1 + t))

k

k!
=

∞∑
n=0

S1(n, k)
tn

n!
(4)

and another generating function for the Stirling numbers of the first kind is falling
factorial function which is given as follows:

x(n) =

n∑
k=0

S1(n, k)xk (5)

(cf. [4]- [68]).
The Stirling numbers of the second kind are defined by the following generating

function:
(et − 1)

k

k!
=

∞∑
n=0

S2(n, k)
tn

n!
; (k ∈ N0;λ ∈ C) (6)

and also

xn =

n∑
k=0

S2(n, k)x(k), (7)

(cf. [4]- [68]).

Distributions and p-adic q-integrals on Zp

Let p be an odd prime number. Let m ∈ N. Let ordp(m) denote the greatest
integer k (k ∈ N0) such that pk divides m in Z. If m = 0, then

ordp(m) =∞.
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Let x ∈ Q, the set of rational numbers, with x = a
b for a, b ∈ Z with n 6= 0. Therefore,

ordp(x) = ordp

(a
b

)
= ordp(a)− ordp(b).

Let |.|p is a map on Q. This map, which is a norm over Q, is defined by

|x|p =

{
p−ordp(x) if x 6= 0,

0 if x = 0.

For instance, x ∈ Q with
x = py

x1

x2
,

where y, x1, x2 ∈ Z and x1 and x2 are not divisible by p. Hence,

ordp(x) = y

and
|x|p = p−y.

The set Qp equipped with this norm |x|p is a topological completion of of set Q. Let
Cp be the field of p-adic completion of algebraic closure of Qp. Let Zp be topological
closure of Z. Let Zp be a set of p-adic integers, which is related to the norm |x|p,
given as follows:

Zp =
{
x ∈ Qp : |x|p ≤ 1

}
.

In order to define p-adic integral, the following definitions and formulas are needed:
Let

f : Zp → Cp.

This function f is called a uniformly differential function at a point a ∈ Zp if f
satisfies the following conditions:

If the difference quotients

Φf : Zp × Zp → Cp

such that
Φf (x, y) =

f(x)− f(y)

x− y
have a limit f ′(z) as (x, y)→ (0, 0) (x and y remaining distinct). A set of uniformly
differential functions is briefly indicated by f ∈ UD(Zp) or f ∈ C1(Zp → Cp). The
additive cosets of Zp are given as follows:

pZp =
{
x ∈ Zp : |x|p < 1

}
, 1 + pZp, . . . , p− 1 + pZp,

where pZp is a maximal ideal of Zp and for each j ∈ {0, 1, . . . , pn − 1} we set

j + pnZp =
{
x ∈ Zp : |x− j|p < p1−n

}
.

Thus, we have
Zp = ∪p−1

j=0 (j + pZp) .
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Distributions:
Every map µ from the set of intervals contained in X to Qp for which

µ (x+ pnZp) =

p−1∑
j=0

µ
(
x+ jpn + pn+1Zp

)
whenever x+ pnZp ⊂ X, exists uniquely to a p-adic distribution on X (cf. [2, 41, 54,
65, 70, 71]).

The Haar distribution is defined by

µHaar
(
x+ pNZp

)
= µ1

(
x+ pNZp

)
=

1

pN
, (8)

which denotes by µ1

(
x+ pNZp

)
= µ1 (x) .

The Dirac distribution is defined by

µDirac
(
x+ pNZp

)
= µα (X) =

{
1 if x ∈ X,
0 otherwise.

The Mazur distribution is defined by

µMazur

(
x+ pNZp

)
=

a

pN
− 1

2
,

where a ∈ Q with 0 ≤ a ≤ p− 1.
The Bernoulli distribution is defined by

µB,k
(
x+ pNZp

)
= pN(k−1)Bk

(
a

pN

)
(cf. [2, 19, 40, 41, 54, 65, 70, 71]).

The distribution µ−1

(
x+ pNZp

)
on Zp is defined by

µ−1

(
x+ pNZp

)
= (−1)x (9)

(cf. [20, 22, 38, 39, 50]).
The Euler distribution is defined by

µE,k,q
(
x+ fpNZp

)
= (−1)a

(
fpN)

)k
Ek
(

a

fpN
; qfp

N

)
,

where N, k, f ∈ N and f is odd (cf. [50, 46, 45, 63]). When q → 1, one has

µE,k,q
(
x+ fpNZp

)
→ (−1)x

(
fpN)

)k
Ek

(
x

fpN

)
(cf. [50]).

p-adic q-integral
Kim [20] defined the p-adic q-integral as follows:
Let f ∈ C1(Zp → K) and q ∈ Cp with |1− q|p < 1. Then we have

Iq(f(x)) =

∫
Zp
f(x)dµq(x) = lim

N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx, (10)
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where

[x] = [x : q] =

{
1−qx
1−q , q 6= 1

x, q = 1

and
µq(x) = µq

(
x+ pNZp

)
which denotes q-distribution on Zp and it is defined by

µq
(
x+ pNZp

)
=

qx

[pN ]q

(cf. [20]).
When q → 1, equation(10) reduces to the Volkenborn integral (bosonic integral)

lim
q→1

Iq(f(x)) = I1(f(x)) =

∫
Zp

f (x) dµ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (11)

where µ1 (x) is given by the equation (8), that is

µ1 (x) =
1

pN

(cf. [2, 15, 54, 70, 71]); see also the references cited in each of these earlier works).
By using the Volkenborn integral (bosonic integral), generating functions for Bernoulli-

type numbers and polynomials and other related special numbers and polynomials can
be constructed (cf. [54], see also [20, 22, 38, 39, 40, 45, 46, 50, 63]).

When q → −1, equation (10) reduces to the fermionic p-adic integral

lim
q→−1

Iq(f(x)) = I−1(f(x)) =

∫
Zp

f (x) dµ−1 (x) (12)

= lim
N→∞

pN−1∑
x=0

(−1)
x
f (x) ,

where µ−1 (x) is given by the equation (9), that is

µ−1 (x) = (−1)
x

(cf. [22], see also [38, 46, 45, 63]).
By using p-adic fermionic integral and its integral equations, generating functions

for Bernoulli-type numbers and polynomials and other related special numbers and
polynomials can be constructed (cf. [54], see also [20, 22, 38, 39, 40, 45, 46, 50, 63]).

Some properties of the Volkenborn integral (Bosonic
p-adic integral)

Let

f (x) =

∞∑
n=0

an

(
x

n

)
∈ C1(Zp → K),

where (
x

n

)
=
x(n)

n!
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the Mahler coefficients. Applying the Volkenborn integral to the above function f (x)
yields the following well-known formula:∫

Zp

f (x) dµ1 (x) =

∞∑
n=0

(−1)n

n+ 1
an,

(cf. [54, p. 168-Proposition 55.3]).
In [54], Schikhof gave the following integral formula for the Volkenborn integral:∫

Zp

f(x+ n)dµ1 (x) =

∫
Zp

f(x)dµ1 (x) +

n−1∑
k=0

f ′(k), (13)

where
f ′(x) =

d

dx
{f(x)} .

Let f : Zp → K be an analytic function and

f (x) =

∞∑
n=0

anx
n

with x ∈ Zp.
The Volkenborn integral of this analytic function is given by∫

Zp

( ∞∑
n=0

anx
n

)
dµ1 (x) =

∞∑
n=0

anBn

(cf. [20, 22, 54, 63]; see also the references cited in each of these earlier works).
Integral equation for the Volkenborn integral is given as follows:∫

Zp

Em [f(x)] dµ1 (x) =

∫
Zp

f(x)dµ1 (x) +

m−1∑
j=0

d

dx
{f(x)} |x=j , (14)

where
Em [f(x)] = f(x+m)

and
d

dx
{f(x)} |x=j = f

′
(j)

(cf. [20, 22, 54, 63, 76]; see also the references cited in each of these earlier works).
Using (10), the following integral equation was given by Kim [24]:

q

∫
Zp
E [f(x)] dµq(x) =

∫
Zp
f(x)dµq(x) +

q − 1

log q
f
′
(0) + (q − 1)f(0) (15)

(cf. see also [35]-[34]).
As usual, exponential function is defined as follows:

et =

∞∑
n=0

tn

n!
.

The above series convergences in region E which is a subset of fieldK with char(K) = 0
(cf. [54, p. 70]).
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Let k be residue class field of K. If char(k) = p, then

E =
{
x ∈ K : |x| < p

1
1−p

}
,

and if char(k) = 0, then
E = {x ∈ K : |x| < 1} .

Let f ∈ C1(Zp → K). Kim [24, Theorem 1] gave the following integral equation:

qn
∫
Zp

En [f (x)] dµq (x)−
∫
Zp

f (x) dµq (x) (16)

=
q − 1

log q

n−1∑
j=0

qjf
′
(j) + log q

n−1∑
j=0

qjf(j)

 ,

where n is a positive integer.
Observe that substituting n = 1 into (16), we arrive at (15).

Theorem 1. Let n ∈ N0. Then we have∫
Zp

(
x

n

)
dµ1 (x) =

(−1)n

n+ 1
. (17)

Note that Theorem 1 was proved by Schikhof [54].
Substituting m = 1 and f(x) = (1 + a)x into (14), we have∫

Zp

(1 + t)xdµ1 (x) =
1

t
log(1 + t).

Therefore,
∞∑
n=0

tn
∫
Zp

(
x

n

)
dµ1 (x) =

1

t
log(1 + t).

Combining the above equation with (17), we have the following well-known relation:

log(1 + t) =

∞∑
n=0

(−1)ntn+1

n+ 1

(cf. [54, 63, 76]). We observe that∫
Zp

axdµ1 (x) =
1

a− 1
logp(a),

where a ∈ C+
p with a 6= 1 (cf. [54, p. 170]).

Let f ∈ C1(Zp → K). Then we have∫
Zp

f(−x)dµ1 (x) =

∫
Zp

f(1 + x)dµ1 (x)

and if f(−x) = −f(x), which is geometrically symmetric about the origin, we have∫
Zp

f(x)dµ1 (x) = −1

2
f ′(0) (18)
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(cf. [54, p. 169]).
We also have the following well-known formula:∫

Zp

eaxdµ1 (x) =

∞∑
n=0

Bn
an

n!
, (19)

where a ∈ E with a 6= 0 (cf. [54, p. 172]). Using Taylor series for eax in the left-hand
side of the equation (19), we have the following well-known the Witt’s formula for the
Bernoulli numbers of the first kind Bn:

Bn =

∫
Zp

xndµ1 (x) , (20)

where n ∈ N0 (cf. [54]; see also [20, 22] and the references cited in each of these earlier
works).

By using (20) and B2n+1 = 0 with n ≥ 1, we have∫
Zp

xdµ1 (x) = B1 = −1

2
,

∫
Zp

x2ndµ1 (x) = B2n

and ∫
Zp

x3dµ1 (x) =

∫
Zp

x5dµ1 (x) = · · · =
∫
Zp

x2n+1dµ1 (x) = 0.

Similarly, we have p-adic representation for the Bernoulli polynomials of the first
kind as follows: ∫

Zp

(z + x)
n
dµ1 (x) = Bn(z), (21)

where n ∈ N0 and Bn(z) denotes the Bernoulli polynomials, which are defined by
means of the following generating function:

tetz

et − 1
=

∞∑
n=0

Bn(z)
tn

n!
,

(cf. [3]- [67]; see also the references cited in each of these earlier works).
Let

Pn(x) =

n∑
j=0

θjx
j

be a polynomial of degree n (n ∈ N0) and θj ∈ R. Substituting Pn(x) into (11), we
have ∫

Zp

Pn(x)dµ1 (x) =

n∑
j=0

θjBj

(cf. [63]). Putting f(x, t;λ) = λxetx in (11), we have∫
Zp

λxet(x+y)dµ1 (x) =
(log λ+ t) ety

λet − 1
=

∞∑
n=0

Bn(y;λ)
tn

n!
, (22)
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where λ ∈ Zp (cf. [37]; see also [11, 61, 68]). Using (22), we have∫
Zp

λx (x+ y)
n
dµ1 (x) = Bn(y;λ).

According to [17, 56, 72] and [39, 63], for each integer N ≥ 0; CpN denotes the
multiplicative group of the primitive pN th roots of unity in C∗p = Cp\ {0}.

Let
Tp =

{
ξ ∈ Cp : ξp

N

= 1, for N ≥ 0
}

= ∪N≥0CpN .

In the sense of the p-adic Pontrjagin duality, the dual of Zp is Tp = Cp∞ , the direct
limit of cyclic groups CpN of order pN with N ≥ 0, with the discrete topology. Tp
accept a natural Zp-module structure which can be written briefly as ξx for ξ ∈ Tp and
x ∈ Zp. Tp are embedded discretely in Cp as the multiplicative p-torsion subgroup.
If ξ ∈ Tp, then ϑξ : (Zp,+)→ (Cp, .) is the locally constant character, x→ ξx, which
is a locally analytic character if ξ ∈ {ξ ∈ Cp : ordp(ξ − 1) > 0}. Consequently, it is
well-known that ϑξ has a continuation to a continuous group homomorphism from
(Zp,+) to (Cp, .) (cf. [17, 39, 57, 56, 63, 72]; see also the references cited in each of
these earlier works).

We assume that λ ∈ Tp. Kim [37] defined the following integral:∫
Zp

λxxndµ1 (x) = Bn(λ), (23)

where Bn(λ) denotes the Apostol-Bernoulli numbers, which are defined by means of
the following generating function:

t

λet − 1
=

∞∑
n=0

Bn(λ)
tn

n!
, (24)

(cf. [3, 67]).
Using (23) yields ∫

Zp

λxdµ1 (x) =
log λ

λ− 1
.

If λk = 1 with k ∈ N, then we have∫
Zp

λxdµ1 (x) = 0.

This also gives us
B0(λ) = 0.

By using (23) and (24), we have∫
Zp

λxxndµ1 (x) =
nHn−1(λ−1)

λ− 1
,

where Hn(λ) denotes the Frobenious-Euler numbers, which are defined by means of
the following generating function:

1− λ
et − λ

=

∞∑
n=0

Hn(λ)
tn

n!
,
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(cf. [55], see also [30], [37, Theorem 1, p. 439], [67, 68]).
The Volkenborn integral of some trigonometric functions are given as follows:∫

Zp

cos(ax)dµ1 (x) =
a sin(a)

2(1− cos(a))
,

where a ∈ E with a 6= 0, p 6= 2 (cf. [54, p. 172], [23]);∫
Zp

sin(ax)dµ1 (x) = −a
2
,

where a ∈ E (cf. [54, p. 170], [23]); and also∫
Zp

tan(ax)dµ1 (x) = −a
2
.

Note that ∫
Zp

sinh(ax)dµ1 (x) =
1

2

∫
Zp

eaxdµ1 (x)− 1

2

∫
Zp

e−axdµ1 (x) .

Combining the above equation with (19), we have∫
Zp

sinh(ax)dµ1 (x) = −a
2
.

p-adic integral over subsets of Zp
Let V be a compact open subset of Zp. Let f ∈ C1(Zp → K). Then we have∫

V

f(x)dµ1 (x) =

∫
Zp

g(x)dµ1 (x) ,

where
g(x) =

{
f(x) if x ∈ V

0 if x ∈ Zp \ V

(cf. [54, p. 174]).

p-adic integral over cosets j + pnZp
Let f ∈ C1(Zp → K). Then we have∫

j+pnZp

f(x)dµ1 (x) =

∫
pnZp

f(j + x)dµ1 (x) =
1

pn

∫
Zp

f(j + pnx)dµ1 (x) (25)

(cf. [54, p. 175]). Putting f(x) = xm (m ∈ N) in (25) yields∫
j+pnZp

xmdµ1 (x) = pn(m−1)Bm

(
j

pn

)
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(cf. [54, p. 175]).
We now give some examples for the above formula:
Let

Tp = Zp \ pZp
and f : Tp → Qp and a C1-function and also f(−x) = −f(x) with x ∈ Tp. Thus we
have ∫

Tp

f(x)dµ1 (x) = 0.

Therefore∫
Tp

1

x
dµ1 (x) =

∫
Tp

1

x3
dµ1 (x) =

∫
Tp

1

x5
dµ1 (x) = · · · =

∫
Tp

1

x2n+1
dµ1 (x) = 0,

where n ∈ N (cf. [54, p. 175]) and∫
Tp

xj
(
xp−1

)s
dµ1 (x) = (j + (p− 1)s) ζp,j(s), (26)

where ζp,j(s) denotes the p-adic zeta function, |s|p < p
p−2
p−1 , s 6= − j

p−1 and j ∈
{0, 1, . . . , p− 2}, p 6= 2 (cf. [54, p. 187], [68]).

Putting s = n (n ∈ N0) in (26), some values of the p-adic zeta function are given
by ∫

Tp

(
xp−1

)n
dµ1 (x) =

(
1− pn(p−1)−1

) Bn(p−1)

n (p− 1)

and ∫
Tp

xj
(
xp−1

)n
dµ1 (x) =

(
1− pj−1+n(p−1)

) Bj+n(p−1)

j + n (p− 1)

whereas for n ∈ {2, 4, 6, 8 . . .}, j = 0 and p = 2; and consequently we also have∫
Tp

xndµ1 (x) =
(
1− 2n−1

) Bn
n

(cf. [54, p. 187], [63, 68]).

p-adic integral of the falling factorial
Kim et al. [31] defined Witt-type identities for the Daehee numbers of the first

kind by the following p-adic integral representation as follows:

Dn =

∫
Zp

x(n)dµ1 (x) , (27)

where Dn denotes the Daehee numbers of the first kind, which are defined by means
of the following generating functions, respectively:

log(1 + t)

t
=

∞∑
n=0

Dn
tn

n!
(28)
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(cf. [52, p. 45], [31]). Using (28) yields

Dn =

∫
Zp

x(n)dµ1 (x)

= (−1)n
n!

n+ 1

=

n∑
v=0

S1(n, v)Bv

(cf. [31], see also [8, 51, 63]).

Theorem 2 (cf. [62]). Let n ∈ N0. Then we have∫
Zp

xx(n)dµ1 (x) = (−1)n+1 n!

n2 + 3n+ 2
(29)

=

n∑
k=1

S1(n, k − 1)Bk +Bn+1. (30)

Theorem 3 (cf. [62]). Let n ∈ N0. Then we have∫
Zp

(
n− x
n

)
dµ1 (x) = (−1)nHn,

where Hn denotes the harmonic numbers given by

Hn =

n∑
k=0

1

k + 1
. (31)

Theorem 4 (cf. [62]). Let n, r ∈ N0. Then we have∫
Zp

(
x

n

)r
dµ1 (x) =

nr∑
k=0

(−1)
k

k + 1

k∑
j=0

(−1)
j

(
k

j

)(
k − j
n

)r
. (32)

Substituting n = 1 into (32), we get∫
Zp

xrdµ1 (x) =

r∑
k=0

(−1)
k

k + 1

k∑
j=0

(−1)
j

(
k

j

)
(k − j)r .

Combining the above formula with (20), we get the following theorem:

Theorem 5. Let r ∈ N0. Then we have

Br =

r∑
k=0

(−1)
k

k + 1

k∑
j=0

(−1)
j

(
k

j

)
(k − j)r .

Theorem 6 (cf. [62]). Let m,n ∈ N0. Then we have∫
Zp

xmx(n)dµ1 (x) =

n∑
k=0

S1(n, k)Bk+m. (33)
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Theorem 7 (cf. [62]). Let m,n ∈ N0. Then we have∫
Zp

x(n)x(m)dµ1 (x) =

n∑
j=0

m∑
l=0

S1(n, k)S1(m, l)Bj+l, (34)

∫
Zp

x(n)x(m)dµ1 (x) =

m∑
k=0

(−1)m+n−k
(
m

k

)(
n

k

)
k!(m+ n− k)!

m+ n− k + 1

and ∫
Zp

x(n)x(m)dµ1 (x) =

m∑
k=0

(
m

k

)(
n

k

)
k!

m+n−k∑
l=0

S1(m+ n− k, l)Bl.

Some properties of the fermionic p-adic integral
Here, we give some well-known properties of the fermionic p-adic integral.
Let f ∈ C1(Zp → K). Kim [23] gave the following integral equation for the

fermionic p-adic integral on Zp:∫
Zp

En [f (x)] dµ−1 (x) + (−1)n+1

∫
Zp

f (x) dµ−1 (x) = 2

n−1∑
j=0

(−1)n−1−jf(j), (35)

where n ∈ N.
Substituting n = 1 into (35), we have very useful integral equation, which is used to

construct generating functions associated with Euler-type numbers and polynomials,
given as follows: ∫

Zp

f (x+ 1) dµ−1 (x) +

∫
Zp

f (x) dµ−1 (x) = 2f(0) (36)

(cf. [23]).
By using (12) and (36), the well-known Witt’s type formulas for the Euler numbers

and polynomials of the first kind are given as follows, respectively:

En =

∫
Zp

xndµ−1 (x) , (37)

where n ∈ N0 (cf. [9, 22]; see also the references cited in each of these earlier works)
and En(z) denotes the Euler polynomials, which are defined by following generating
function

2

et + 1
=

∞∑
n=0

En
tn

n!

(cf. [3]- [67]), and

En(z) =

∫
Zp

(z + x)
n
dµ−1 (x) , (38)

where n ∈ N0 (cf. [9, 22]; see also the references cited in each of these earlier works)
and En(z) denotes the Euler polynomials, which are defined by following generating
function

2etz

et + 1
=

∞∑
n=0

En(z)
tn

n!

(cf. [3]- [67]).
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Theorem 8 (cf. [35, Theorem 2.3]). Let n ∈ N0. Then we have∫
Zp

(
x

n

)
dµ−1 (x) = (−1)n2−n. (39)

By using the fermionic p-adic integral on Zp, Kim et al. [35] defined the Changhee
numbers of the first as follows:

Chn =

∫
Zp

x(n)dµ−1 (x) , (40)

where Chn denotes the Changhee numbers of the first kind are defined by means of
the following generating functions

2

t+ 1
=

∞∑
n=0

Chn
tn

n!
(41)

(cf. [35]). Using (41) yields

Chn = (−1)n
n!

2n
=

n∑
k=0

S1(n, k)Ek (42)

(cf. [35], see also [12, 47, 63]).
By using (35), Kim [24] modified (12) which gives the following integral equation:

qd
∫
Zp

Edf (x) dµ−q (x) +

∫
Zp

f (x) dµ−q (x) = [2]

d−1∑
j=0

(−1)jqjf(j), (43)

where d is an positive odd integer.
The Volkenborn integral of some trigonometric functions are given as follows:∫

Zp

cos(ax)dµ−1 (x) = 1,

where a ∈ E with a 6= 0, p 6= 2 (cf. [23]);∫
Zp

sin(a (x+ 1))dµ−1 (x) = −
∫
Zp

sin(ax)dµ−1 (x) ,

where a ∈ E (cf. [23]); and also

(cos(a) + 1)

∫
Zp

sin(ax)dµ−1 (x) = − sin(a).

We also have ∫
Zp

sinh(ax)dµ−1 (x) = 1

(cf. [63]).
Let

Pn(x) =

n∑
j=0

ajx
j
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be a polynomial of degree n (n ∈ N0). Substituting Pn(x) into (12), we have∫
Zp

Pn(x)dµ−1 (x) =

n∑
j=0

aj

∫
Zp

xjdµ−1 (x) .

Since E2n = 0 for n ∈ N, by combining the above equation with (37), we thus have

∫
Zp

Pn(x)dµ−1 (x) = 1 +

[n+1
2 ]∑
j=0

a2j+1E2j+1

(cf. [63]).
Substituting g(x, t;λ) = λxetx into (36) yields∫

Zp

g(x, t;λ)dµ−1 (x) =
2

λet + 1
.

Combining the above equation with (45) yields∫
Zp

λxxndµ−1 (x) = En (λ) , (44)

where En (λ) denotes the Apostol-Euler polynomials En(λ) are defined by means of
the following generating function:

2

λet + 1
=

∞∑
n=0

En(λ)
tn

n!
, (45)

(cf. [6, 23, 63, 67]).

Integral formulas for the fermionic p-adic integral
Theorem 9 (cf. [62]). Let n ∈ N. Then we have∫

Zp

xx(n)dµ−1 (x) = (−1)n
(n− 1)

2n+1
n!. (46)

Theorem 10 (cf. [62]). Let n ∈ N0. Then we have∫
Zp

xx(n)dµ−1 (x) =

n∑
k=1

(−1)k
(
n− 1

k − 1

)
(k − 1)

2k+1
n!. (47)

Theorem 11 (cf. [62]). Let n, r ∈ N0. Then we have∫
Zp

(
x

n

)r
dµ−1 (x) =

nr∑
k=0

(−1)
k

2k

k∑
j=0

(−1)
j

(
k

j

)(
k − j
n

)r
. (48)

Substituting n = 1 into (48), we get∫
Zp

xrdµ−1 (x) =

r∑
k=0

(−1)
k

2k

k∑
j=0

(−1)
j

(
k

j

)
(k − j)r .

Combining the above formula with (37), we get the following theorem:
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Theorem 12. Let r ∈ N0. Then we have

Er =

r∑
k=0

(−1)
k

2k

k∑
j=0

(−1)
j

(
k

j

)
(k − j)r .

Theorem 13 (cf. [62]). Let n ∈ N0. Then we have∫
Zp

(
n− x
n

)
dµ−1 (x) =

n∑
k=1

2−k. (49)

With the aid of the following known formula

n∑
k=1

xk =
xn+1 − x
x− 1

,

equation (49) can be also given by the following theorem:

Theorem 14. Let n ∈ N0. Then we have∫
Zp

(
n− x
n

)
dµ−1 (x) = 1− 2−n.

Theorem 15 (cf. [63]). Let m,n ∈ N0. Then we have∫
Zp

xmx(n)dµ−1 (x) =

n∑
k=0

S1(n, k)Ek+m. (50)

Theorem 16 (cf. [63]). Let m,n ∈ N0. Then we have∫
Zp

x(n)x(m)dµ−1 (x) =

m∑
k=0

(−1)m+n−k
(
m

k

)(
n

k

)
k!(m+ n− k)!

2m+n−k . (51)

Combining (51) with (5), we get∫
Zp

x(n)x(m)dµ−1 (x) =

n∑
k=0

m∑
j=0

S1(n, k)S1(m, j)

∫
Zp

xk+jdµ−1 (x) .

Combining the above formula with (37), we get the following theorem:

Theorem 17. Let m,n ∈ N0. Then we have

n∑
k=0

m∑
j=0

S1(n, k)S1(m, j)Ej+k =

m∑
k=0

(−1)m+n−k
(
m

k

)(
n

k

)
k!(m+ n− k)!

2m+n−k .
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Remarks on integral formula generated by
Hurwitz-Lerch zeta function with order 1

Aykut Ahmet Aygunes

We [4] gave an integral formula associated with Hurwitz-Lerch zeta function
with order 1 which is special case of Hurwitz-Lerch zeta function. Then by
using this formula, he obtained a corollary generated by integral representation
of Hurwitz-Lerch zeta function with order 1. In this presentation, we investigate
and survey on unified formula by means of the result of our formulas and zeta
function [4].
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Investigating analytical bounds for the
vertex corona in simple connected graphs

A. S. Maragadam ∗1 and Veerabhadraiah Lokesha 2

Topological indices play a crucial role in the analysis of chemical graphs, of-
fering numerical insights into compound and network structures. Widely utilized
in chemical modeling to quantify relationships in structure-activity-property-
toxicity and combinatorial library screening, this article presents significant dis-
coveries. By establishing lower and upper bounds for various indices based solely
on the minimum and maximum degree values within the graph denoted as G, the
study provides a simplified approach for assessing topological indices in chemical
compounds.
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Observations on generalized Pöschl-Teller
potential related to dimer interaction

Burcu Emre

In this presentation we study on generalized Pöschl-Teller potential asso-
ciated with dimer interaction. All parameters of the generalized Pöschl-Teller
potential are determined by fitting Morse potential. With the aid of parameters,
the energy levels of different diatomic molecules ranging are determined. It is
observed that the potential provides a good agreement to experimental data as
well as previous theoretical works conducted for the same dimer systems in the
literature.

Furthermore, we give many new results and applications on the generalized
Pöschl-Teller potential with the dimer interaction.

2020 MSC: 35J10

Keywords: Pöschl-Teller potential, Diatomic interactions, Morse potential, Math-
ematical physics

Introduction
It is important to determine inter-atomic potentials to understand behaviour of

molecules. Some potentials have been widely used for this purpose such as Lennard-
Jones potential, Morse potential, Buckingham potential(electrostatic), Born-Karman
potential etc. The Pöschl-Teller potential is a mathematical model used to describe
behaviour certain molecules in quantum mechanics. The potential, depends on the
inter-molecular distance, allows for the analysis of molecular properties such as bond
dissociation energies and vibrational frequencies. Because of having analytically solv-
able function and including adjustable parameters make it convenient. In this study,
we can use the following methods which were introduced in [1] and [2].

Schrödinger equation is given by (cf. [1]):

d2Ψ(r)

dr2
+ (E − V (r)) Ψ(r) = 0. (1)

If the equation is solved and rearranged (cf. [2]):

V (r) = − A exp(−2ar)

(1 + b2exp(−2ar))2
+

B exp(−2ar)

(1− b2exp(−2ar))2
(2)

which named Generalized Pöschl-Teller Potential, and energy spectra is obtained:

En = −a2

(
2n+ 1− 1

2

√
1 +

A

a2b2
+

1

2

√
1 +

B

a2b2

)2

. (3)
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For two atomic molecules, the potential can be determined by three conditions:

V ′(re) = 0,

V (∞)− V (re) = De,

V ′′(re) = ke (4)

and from the rotational-vibrational coupling constants;

αe = −6B2
e

ωe

(
Xre + 3

3

)
= F

(
6B2

e

ωe

)
, (5)

where we is the vibrational frequency, Be rotational constant.

∆ =
ker

2
e

2De
,

Sutherland parameter, ke is force constant, re is equilibrium distance between two
atoms, De is dissociation energy, the quantity

Γ =
1

9
X2r2

e ,

where
X =

V ′′′(re)

V ′′(re)
,

where
d2V

dr2
= V ′′

and
d3V

dr3
= V ′′′

and unharmonicity is given by

weXe = 8∆
W

r2
eµA

.

Thus, we have

y2
e =

±
√

Γ
∆ − 1

1±
√

Γ
∆

,

a = ±
√

∆

2re
,

b2 = yee
±∆;

and also

B =
Deb

2(1− ye)4

4y2
e

,

A =

(
1 + ye
1− ye

)4

B

(cf. [2]).
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Conclusion
In this study, we studied and surveyed on generalized Pöschl-Teller potential as-

sociated with dimer interaction.
Our future project, we will investigate many new results and applications on the

generalized Pöschl-Teller potential with the dimer interaction.
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Interval uncertainty non-cooperative games
Dmitriy Dolgy

The theory of non-cooperative games is well developed and widely repre-
sented in the scientific and educational literature (see for example [2, 4-10, 12]).
The main results are related with the definition, existence, identification, find-
ing and selection of preferred equilibrium situations. The classical concept of
equilibrium [6] assumes that the payoffs of the players in each game situation
are unambiguous. If the game allows polysemy of payoffs then the concept of
equilibrium changes taking into account the nature of polysemy and the degree
of awareness of the players. For example, in stochastic games, the polysemy
of payoffs is due to the action of random factors. The law of distribution of
these factors constitutes additional information known to the players. To study
equilibrium situations, the apparatus of probability theory is used.

In games with � nature�, the ambiguity of payoffs is associated with the
uncertainty of nature’s behavior. Due to the lack of additional information, this
uncertainty is characterized as � hopeless �. Equilibrium is understood in
terms of guaranteed payoffs. Numerous game models with hopeless uncertainty
arise in applications of economic and social sciences in which the choice of criteria
and objective evaluations of strategies represent a complex independent problem.

One of the effective tools for studying mathematical models with uncertain
factors is interval analysis. In this section, interval analysis is applied to non-
cooperative games with hopeless payoff uncertainty. In other words, the model
of the game assumes that the payoff of each participant can be any real number
from some interval and there is no additional information about the distribu-
tion of payoffs within the interval. To determine equilibrium situations, partial
ordering of intervals based on a numerical indicator is used. This allows us to
reduce the original game to a new deterministic game [10] and generalize the
classical theory [5, 6, 12].
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On B-spline: Analysis of Apostol-Bernoulli
numbers and Eulerian polynomials

Damla Gun ∗1 and Yilmaz Simsek 2

This study is inspired by the article of the second author [22], who calcu-
lated many explicit formulas and identities for a novel combining of generating
functions with their functional and derivative equations for the certain family
of special numbers and polynomials, the Bernstein basis functions, and also the
uniform B-spline. Moreover, the aim of this presentation is to survey and in-
vestigate many properties of Eulerian numbers and polynomials with the aid of
the Frobenius-Euler numbers and polynomials, the Apostol-Bernoulli numbers
and polynomials. By using these relations we derive many new formulas for the
B-splines and also the Bernstein basis functions.

2020 MSC: 05A15, 41A15, 11B68, 12D10

Keywords: Generating functions, uniform B-splines, Bernstein basis functions,
Apostol–Bernoulli numbers and polynomials, Eulerian numbers and polynomials

Introduction
The motivation of this presentation is to blend some certain family of the special

polynomials, the (uniform) B-spline, and generating functions with their functional
equations. The topics of this study have many applications in almost all areas of
pure and applied mathematics and other sciences. For instance, in many scientific
areas, the polynomial approach, which is among the approximation methods used for
problem-solving, has been important applications. There are many relations among
certain family of special polynomials, curves, and splines. We know that it may not
always be possible to find the desired curve to solve problem, involving real-world
problems or others. On the other hand, with the aid of (special) polynomials, which
can be represented the desired curve and splines involving the Bezier curves, the
Bernstein basis functions, the (uniform) B-spline etc. The other applications related
to the numerical instabilities associated with the spline interpolation. These numerical
instabilities can be overcome with the B-spline curve families. The B-spline curves are
piecewise polynomials and form the basis for the entire family of spline curves. That
is, all spline curves can be written as a linear combination of the B-spline (cf. [1]- [24]).

In order to derive novel formulas and relations of our work, we combine generating
functions for the certain family of special numbers and polynomials, the Bernstein
basis functions, and also the uniform B-spline, and others.

The following notations can be used throughout of this work:
Let N = {1, 2, 3, . . .}, Z, Q, R and C denote the set of integers, the set of ratio-

nal numbers, the set of real numbers, and the set of complex numbers. numbers,
respectively.

Let N0 = N∪{0}.
The Stirling numbers of the second kind are defined by

(et − 1)
m

m!
=

∞∑
n=0

S2(n,m)
tn

n!
, (1)
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where t ∈ C and m ∈ N0 (cf. [5, 19, 21, 24]).
The Apostol-Bernoulli numbers Bn(λ) are defined by

Kn (t;λ) =
t

λet − 1
=

∞∑
n=0

Bn(λ)
tn

n!
, (2)

where λ is an arbitrary (real or complex) parameter and |t| < 2π when λ = 1 and
|t| < |log λ| when λ 6= 1 (cf. [2, 3, 19, 21, 24]).

Lemma 1. Let n ∈ N with n > 1. Then we have

Bn(λ) =
nλ

(λ− 1)
n

n−1∑
s=0

(−1)
s
s!λs−1 (λ− 1)

n−1−s
S2 (n− 1, s) (3)

(cf. [2]).

The Apostol-Bernoulli polynomials Bn(ω;λ) are defined by

Kp (ω, t;λ) = Kn (t;λ) etω =

∞∑
n=0

Bn(ω;λ)
tn

n!
(4)

where λ 6= 1 (cf. [2]).
Substituting λ = 1 into (4), we have the Bernoulli polynomials:

Bn (ω) = Bn (ω; 1)

when ω = 0, we also have Bn = Bn(0) (cf. [2, 11, 21]).
Let φ be a complex number with φ 6= 1. The Frobenius Euler polynomialsHn(ω;φ)

are defined by

FP (t, ω, φ) =
1− φ
et − φ

etω =

∞∑
n=0

Hn(ω;φ)
tn

n!
, (5)

where |t| < 2π when 1
φ = 1 and |t| <

∣∣∣log
(

1
φ

)∣∣∣ when 1
φ 6= 1 (cf. [15, 21, 24]).

Substituting ω = 0 into (5), we have the Frobenius Euler numbers Hn(φ) are
defined by

FN (t, φ) =
1− φ
et − φ

=

∞∑
n=0

Hn(φ)
tn

n!
. (6)

By using (6), we have

Hn(φ) =


1 for n = 0

1
φ

n∑
j=0

(
n
j

)
Hj(φ) for n > 0.

Combining (2) and (5) for n > 1 yields

nHn−1(ω;φ) =
1− φ
φ
Bn
(

1

φ

)
. (7)

The Eulerian polynomials are defined by

Fa(t, λ) =
1

1− λet(1−λ)
=

∞∑
n=0

An(λ)

1− λ
tn

n!
, (8)
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where λ 6= 1, An(λ) is a polynomial in λ of degree n− 1 for n > 0:

An(λ) =

n∑
j=0

An,jλ
j , (9)

where An,j is an integer number, known as the Eulerian numbers:

An,j =

j∑
v=0

(−1)v
(
n+ 1

v

)
(j − v)n, (10)

j = 1, 2, . . . , n, 0 ≤ j < n, n ∈ N (cf. [4, 5, 13]).
The Worpitzky identity for the Eulerian numbers is given as follows:

ωn =

n∑
v=0

(
ω + v − 1

n

)
An,v, (11)

where ω ∈ R, n ∈ N0 (cf. [4, 13]).
By using the umbral calculus method in (8), we get

An(λ) = λ

n∑
j=0

(
n

j

)
(1− λ)

n−j
Aj(λ),

where A0(λ) = 1.
Generating functions for the Bernstein basis functions Bkj (ω) are given by

fB,d(t, ω) = (ωt)det(1−ωω) =

∞∑
k=d

d!Bkd (ω)
tk

k!
, (12)

where
Bkd (ω) =

(
k

d

)
ωd(1− ω)k−d (13)

0 ≤ d ≤ k, and d, k ∈ N0, if d > k, then

Bkd (ω) = 0

(cf. [23, 20]).
In recent years, many studies have been carried out covering the generating func-

tions of Bernstein base functions and their applications in many different scientific
areas (cf. [1, 7, 9, 10, 16, 17, 14, 23]).

Goldman [6] gave the following generating function for the uniform B-splines from
N0,n(ω; p):

G0(ω, t; p) =

p∑
j=0

(−1)j
(

(ω − j)jtj

j!
+

(ω − j)j−1tj−1

(j − 1)!

)
e(ω−j)t (14)

=

∞∑
n=0

N0,n(ω; p)tn,

p ≤ ω ≤ p+ 1.
By using (14), Goldman [6, Theorem 3] gave the following well-known Schoenberg’s

identity and the de Boor recurrence for the uniform B-splines, respectively:

N0,n(ω; p) =
1

n!

p∑
j=0

(−1)j
(
n+ 1

j

)
(ω − j)n, (15)
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where p ≤ ω ≤ p+ 1 and

N0,n(ω; p) =
ω

n
N0,n−1(ω; p) +

n+ 1− ω
n

N1,n−1(ω; p)

(cf. [6, Theorem 3]).
On the other hand, the second author [22] generalized both the Schoenberg’s

identity and the de Boor recurrence for the uniform B-splines. He [22] also gave the
following novel formulas:

Bm+1(λ) = (−1)m (λ− 1)
m+1

(m+ 1)!

m∑
j=0

N0,m(j; j)λj (16)

and
N0,m(p; p) =

1

m!
Am (p) , (17)

where m ∈ N0

Am−1(λ) = − (1− λ)m

mλ
Bm(λ) (18)

and

Am(λ) =

m∑
n=1

n!(1− λ)m−nλnS2(m,n) (19)

where m ∈ N (cf. [22]).
Boyadzhiev [3] gave the following relation between the Apostol-Bernoulli numbers

and the geometric polynomials Wn(w):

Bn (λ) =
n

λ− 1
Wn−1

(
λ

1− λ

)
, (20)

where n ∈ N and

Wn(λ) =

n∑
j=0

j!S2(n, j)λj . (21)

Relations among the uniform B-spline, Apostol-Bernoulli
numbers, Frobenius Euler numbers Eulerian numbers
and the Bernstein Basis Functions

In this section, we give new formulas including uniformB-splines, Apostol-Bernoulli
numbers, Frobenius Euler polynomials and numbers, and Eulerian numbers. We also
give some functional equations to generating functions for uniform B-splines and
Bernstein basis functions. With these equations, we work on series representations
for uniform B-splines and Bernstein basis functions.

By combining (3) with (18), we arrive at the following theorem:

Theorem 2. Let n ∈ N0

An(λ) = (−1)
n

n∑
s=0

(−1)
s
s!λs−1 (λ− 1)

n−s
S2 (n, s) .

48 Antalya, TURKEY



THE PROCEEDINGS BOOK OF GFSNP 2024

By combining (18) with (20), we have

An(λ) =
(1− λ)

n

λ
Wn

(
λ

1− λ

)
.

By using the above equation with (21), we obtain

An(λ) =

n∑
j=0

j! (1− λ)
n−j

λj−1S2(n, j).

By combining the above equation with (13), we arrive at the following theorem:

Theorem 3. Let n ∈ N0

An(λ) =

n∑
j=0

j!
S2(n, j)(
n+ j + 1

j

)Bn−1
j−1 (λ) .

By combining (18) with (16), we arrive at the following theorem:

Theorem 4. Let n ∈ N0

An(λ) =
(λ− 1)

2n+2

λ
n!

n∑
j=0

N0,n(j; j)λj . (22)

Conclusion
This work was inspired by the article of the second author [22], who calculated

many explicit formulas and identities for a novel combining of generating functions
with their functional and derivative equations for the certain family of special num-
bers and polynomials, the Bernstein basis functions, and also the uniform B-spline.
We investigated various properties of Eulerian numbers and polynomials by using the
Frobenius-Euler numbers and polynomials, the Apostol-Bernoulli numbers and poly-
nomials. By using these relations, we derived some novel formulas for the B-splines
and also the Bernstein basis functions.

Our future project will be to investigate applications of the uniform B-spline
associated with splines, and other special numbers and polynomials.
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On generating functions of Jacobi and
Bernstein polynomials

Dudu Seyma Kun ∗1 and Ayse Yilmaz Ceylan 2

The aim of this study is to establish the Jacobi polynomials in terms of Bern-
stein basis functions. First of all, the definition and some important properties
of the Jacobi polynomials are given. As the main part of the study, we construct
generating functions of these Jacobi polynomials written as linear combinations
of Bernstein basis functions.
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On the special cases of twice-iterated big
q-Appell polynomials

Duygu Malyalı ∗1 and Mehmet Ali Özarslan 2

In this paper, we choose some special cases of the determining functions
a1(t) and a2(t) of the twice-iterated Big q-Appell Polynomials. Therefore, we
obtain some twice-iterated polynomials. We present the recurrence relations,
shift operator and difference equations which satisfy by the twice iterated big
q-Bernoulli-Euler polynomials, twice-iterated big q-Bernoulli polynomials, twice-
iterated big q-Euler polynomials, twice-iterated big q-Genocchi polynomials.
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Convolution sums of restricted divisor
functions including a pairwise coprime

conditions
Nohyun Kim 1 and Daeyeoul Kim ∗2

The study of general convolution sums,
∑N−1
i=1 g(i)g(N − i), has been preva-

lent for a long time, but the form of
∑N−1

i=1
gcd(i,N−i)=1

g(i)g(N−i) is not well-known.

The aim of this article is to find formulasA and K using the Dirichlet convolution
sums.
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A note of iterations for matrix
Daeyeoul Kim

First of all, congratulations on Professor Kim Tae-gyun’s 60th birthday. This
paper analyzes repeated results in a matrix. The facts used are the Cayley-
Hamilton theorem of linear algebra and the theory of elliptic curves. Of course,
we define matrix sequences and investigate their iterated properties.
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Exponential sums for classical groups and
their applications

Dae San Kim ∗1 and Taekyun Kim 2

The aim of this survey paper is to review Gauss sums for classical groups
over finite fields and show some of their applications. The explicit computations
of Gauss sums for such groups were done in three different ways. Here, in the
case of the Gauss sum for the symplectic group Sp(2n, q), we give a sketch of
proof only for the method which uses the Bruhat decomposition with respect
to a maximal parabolic subgroup of Sp(2n, q). Then we present three applica-
tions of Gauss sums for classical groups over finite fields to the evaluations of
Hodges’ Kloosterman sums, counting the number of elements in classical groups
over finite fields with given traces, and constructions of linear codes and power
moments of Kloosterman sums.

2020 MSC: 11T23, 11T24, 20G40, 20H30, 94B05

Keywords: Exponential sum, Classical group, Bruhat decomposition, Maximal
parabolic subgroup, Hodges’ Kloosterman sums, Linear codes, Power moments of
Kloosterman sums

Introduction
The present article is a survey paper and an enlarged version of the earlier one

(cf. [13]) about twenty eight years ago. The purpose of this paper is to consider
‘Gauss sums’ for classical groups over finite fields and show how explicitly they can
be evaluated, and to give three applications of them.

The actual computations about explicit expressions of such Gauss sums were done
by using three different ways. The first method uses Bruhat decompositions with
respect to suitable maximal parabolic subgroups of the classical groups, the second
one expresses the Gauss sums as the alternating sum of traces of Frobenius maps
acting on Weyl group invariant part of certain cohomology groups of (G/T )T , where
T is a maximal torus of G, and the third one utilizes some consequences of Deligne-
Lusztig character theory of G and structure theory on maximal tori of G. Here we
are content with giving a sketch of the proof by using the first method for the Gauss
sum associated with symplectic groups over finite fields.

Astonishingly enough, these methods have turned out to be very fruitful. We relate
the Gauss sums for classical groups to Hodges’ Kloosterman sums over finite fields (cf.
[1], [8]- [11]). Also, it is shown that the number of elements in the classical groups over
finite fields with the given trace values can be obtained from our explicit expressions
for the corresponding Gauss sums. In addition, we construct binary and ternary linear
codes associated with classical groups of small order and obtain recursive formulas for
(complete or incomplete) power moments of Kloosterman sums in terms of frequencies
of weights in those codes. These are done by using the explicit expressions of Gauss
sums for the classical groups over finite fields and the Pless power moment identity.
Furthermore, we can construct many infinite families of linear codes from double cosets
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with respect to certain maximal parabolic subgroups of the classical groups over finite
fields and get recursive formulas for power moments of Kloosterman sums. These are
done via Pless power moment identity and by utilizing the explicit expressions of
exponential sums over those double cosets related to the evaluations of Gauss sums
for classical groups.

Classical sums
The following notations will be used throughout this paper (cf. [45]).

q = pr (p a prime, r ∈ Z>0),

Fq=the finite field with q elements,

tr(x) = trFq/Fp(x) = x+ xp + · · ·+ xp
r−1

the trace function Fq → Fp,

λ(x) = e2πitr(x)/p the canonical additive character of Fq,

TrA = the trace of A for a square matrix A,

tB = the transpose of B for any matrix B.

Let ψ be an additive character of Fq (i.e., ψ ∈ Hom (F+
q ,C×)). Then it is given

by ψ(x) = λ(ax), for a unique a ∈ Fq, so that

ψ(x) = λ(ax) = exp

{
2πi

p
(ax+ (ax)

p
+ · · ·+ (ax)

pr−1

)

}
.

Furthermore, ψ(x) = λ(ax) is nontrivial if a 6= 0.
Let χ be a multiplicative character of Fq (i.e., χ ∈ Hom(F×q ,C×)). Then the

(classical) Gauss sum is defined as :

G(χ, ψ) =
∑
α∈F×q

χ(α)ψ(α).

For a nontrivial additive character ψ and a ∈ F×q , the (classical) Kloosterman sum
K(ψ; a) is defined by

K(ψ; a) =
∑
α∈F×q

ψ(α+ aα−1).

The Kloosterman sum was introduced in 1926 (cf. [43]) to give an estimate for the
Fourier coefficients of modular forms.

For any positive integer h, the hth moment of Kloosterman sums is defined as

MKh =
∑
α∈F×q

K(λ;α)h.

Explicit computations on power moments of Kloosterman sums were initiated in the
paper [49] of Salié in 1931, where it is shown that for any odd prime power q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1, (h ≥ 1).

Here M0 = 0, and for h ∈ Z>0,

Mh =| {(α1, . . . , αh) ∈ (F∗q)h |
h∑
j=1

αj = 1 =

h∑
j=1

α−1
j } | .
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For q = p odd prime, Salié obtained MK1,MK2,MK3,MK4 in [49] by determining
M1,M2,M3. Assume now that q = 3r. Recently, Moisio was able to find explicit
expressions of MKh, for h ≤ 10 (cf. [46]). This was done, via Pless power moment
identity, by connecting moments of Kloosterman sums and the frequencies of weights
in the ternary Melas code of length q − 1, which were known by the work of Geer,
Schoof and Vlugt in [7].

For a nontrivial additive character ψ of Fq, and a ∈ F×q , the Kloosterman sum
KGL(t,q)(ψ; a) is defined as :

KGL(t,q)(ψ; a) =
∑

g∈GL(t,q)

ψ(Tr g + aTr g−1),

where GL(t, q) is the general linear group consisting of all t×t invertible matrices with
entries in Fq. In [14], it is shown that KGL(t,q)(ψ; a) satisfies the following recurrence
relation.

Theorem 1. For integers t ≥ 2, we have

KGL(t,q)(ψ; a) = qt−1KGL(t−1,q)(ψ; a)K(ψ; a) + q2t−2(qt−1 − 1)KGL(t−2,q)(ψ; a),

where we understand that KGL(0,q)(ψ; a) = 1.

From Theorem 1, we can derive the following expression given by

KGL(t,q)(ψ; a) = q
1
2 (t−2)(t+1)

[(t+2)/2]∑
l=1

qlK(ψ; a)
t+2−2l

∑ l−1∏
ν=1

(qjν−2ν − 1), (1)

where the inner sum is over all integers j1, · · · , jl−1 satisfying 2l− 1 6 jl−1 6 jl−2 6
· · · 6 j1 6 t+ 1 (with the understanding that the inner sum is 1 for l = 1).

Classical groups
Let J2n, J2n+1, J

+
2n, J

−
2n be the matrices respectively given by

[
0 1n
−1n 0

]
,

 0 1n 0
1n 0 0
0 0 1

 , [ 0 1n
1n 0

]
,


0 1n−1 0 0

1n−1 0 0 0
0 0 1 0
0 0 0 −ε

 ,
with a fixed element ε ∈ F×q \F×

2

q . Then our classical groups are as follows.

GL(n, q) = {g|g is of sizen× nwith entries inFq, det g 6= 0}.

GSp(2n, q) = {g ∈ GL(2n, q)| tgJ2ng = ν(g)J2n, for some ν(g) ∈ F×q }.

O(2n+ 1, q) = {g ∈ GL(2n+ 1, q)|tgJ2n+1g = J2n+1}.

O+(2n, q) = {g ∈ GL(2n, q)|tgJ+
2ng = J+

2n}.

O−(2n, q) = {g ∈ GL(2n, q)|tgJ−2ng = J−2n}.

59 Antalya, TURKEY



THE PROCEEDINGS BOOK OF GFSNP 2024

For O(2n+ 1, q), O+(2n, q), and O−(2n, q), we assume that charFq 6= 2.

U(2n, q2) = {g ∈ GL(2n, q2)| ∗gJ+
2ng = J+

2n}.

U(2n+ 1, q2) = {g ∈ GL(2n+ 1, q2)|∗gJ2n+1g = J2n+1}.

Here τ : Fq2 → Fq2 is the Frobenius automorphism given by τα = ατ = αq ∗g = tgτ ,
and for A = (aij), A

τ = (aτij).
Except for

Sp(2n, q) = {g ∈ GL(2n, q)|tgJ2ng = J2n},

SL(n, q), SO(2n + 1, q), SO+(2n, q), SO−(2n, q), SU(2n, q2), SU(2n + 1, q2) are the
corresponding ones intersected with {det = 1}.

Assume that char Fq = 2. In this case, the group O(2n + 1, q) is defined as the
group of all isometries of the nondegenerate quadratic space (F(2n+1)×1

q , θ), where θ
is the nondegenerate quadratic form on the vector space F(2n+1)×1

q of all (2n+ 1)× 1
column vectors over Fq. These groups can be given explicitly in terms of invertible
matrices. Analogously to this, O+(2n, q) and O−(2n, q) are defined. For details on
these, one refers to [41].

Main results

Gauss sums for classical groups
Let χ be a multiplicative character of Fq, and let ψ be a nontrivial additive char-

acter of Fq. Then we consider, respectively called the Gauss sum for G and that for
SG, ∑

g∈G
χ(det g)ψ(Tr g),

and ∑
g∈SG

ψ(Tr g),

whereG = GL(n, q), GSp(2n, q), O(2n+1, q), O+(2n, q), O−(2n, q), and SG = SL(n, q),
Sp(2n, q), SO(2n+ 1, q), SO+(2n, q), SO−(2n, q).

Let χ′ be a multiplicative character of Fq2 , ψ′ = ψ ◦ tr F2
q/Fq (with ψ a nontrivial

additive character of Fq as above). Then we also consider∑
g∈G

χ′(det g)ψ′(Tr g),

and ∑
g∈SG

ψ′(Tr g),

where G = U(2n, q2), U(2n+ 1, q2) and SG = SU(2n, q2), SU(2n+ 1, q2).
Our concern is to find explicit expressions for these sums. Here we briefly go over

the Gauss sum for Sp(2n, q). As to the Gauss sums for the other classical groups over
finite fields, the reader refers to the papers [15]- [24], [40] and [41]. All of these were
done in the same spirit as for the symplectic group by using Bruhat decompositions
with respect to suitable maximal parabolic subgroups in the classical groups over
finite fields. Many of these results were mentioned in [44] and [47].
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As we remarked earlier, these computations were also carried out by using two
completely different methods. For one, the Gauss sum

∑
g∈G ψ(Trg), for G =

GL(n, q), SL(n, q), Sp(2n, q), SO+(2n, q), SO(2n + 1, q), was expressed as the alter-
nating sum of traces of Frobenius maps acting on Weyl group invariant part of cer-
tain cohomology groups of (G/T )T , where T is a maximal torus of G. For these,
one refers to [2], [5] and [50]. For another, the Gauss sum

∑
g∈G χ(detg)ψ(Trg) for

the classical group G was calculated by using some consequences of Deligne-Lusztig
character theory of G and structure theory on maximal tori of G (cf. [6]). Indeed,
these calculations were done for GL(n, q), SL(n, q), U(n, g2), SU(n, q2) in [3] and for
Sp(2n, q), GSp(2n, q), SO+(2n, q), SO−(2n, q), SO(2n+ 1, q) in [4].

Let P = P (2n, q) be the maximal parabolic subgroup of Sp(2n, q) defined by:

P (2n, q) =

{[
A 0
0 tA−1

] [
1n B
0 1n

]
| A ∈ GL(n, q), tB = B

}
.

Then, with respect to P = P (2n, q), the Bruhat decomposition of Sp(2n, q) is given
by

Sp(2n, q) =

n∐
r=0

PσrP,

where

σr =


0 0 1r 0
0 1n−r 0 0
−1r 0 0 0

0 0 0 1n−r

 ∈ Sp(2n, q).
Put, for each r with 0 ≤ r ≤ n,

Ar = {g ∈ P (2n, q) | σrgσ−1
r ∈ P (2n, q)}.

Expressing Sp(2n, q) as a disjoint union of right cosets of P = P (2n, q), the Bruhat
decomposition in (12) can be written as

Sp(2n, q) =

n∐
r=0

Pσr(Ar \ P ). (2)

The order of the general linear group GL(n, q) is given by

gn =

n−1∏
j=0

(qn − qj) = q(
n
2)

n∏
j=1

(qj − 1). (3)

For integers n, r with 0 ≤ r ≤ n, the q-binomial coefficients are defined as:

[nr]q =

r−1∏
j=0

(qn−j − 1)/(qr−j − 1). (4)

In [14], it is shown that

|Ar| = grgn−rq
(n+1

2 )qr(2n−3r−1)/2. (5)

Also, it is immediate to see that

|P (2n, q)| = q(
n+1

2 )gn. (6)
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So, from (3)-(6), we get
|Ar \ P (2n, q)| = q(

r+1
2 ) [nr]q ,

and

|P (2n, q)σrP (2n, q)| = |P (2n, q)|2|Ar|−1 = qn
2

[nr]q q
(r2)qr

n∏
j=1

(qj − 1). (7)

Also, from (2) and (7), we have

|Sp(2n, q)| =
n∑
r=0

|P (2n, q)|2|Ar|−1 = qn
2
n∏
j=1

(q2j − 1),

where one can apply the following q-binomial theorem with x = −q:
n∑
r=0

[nr]q (−1)rq(
r
2)xr = (x; q)n,

with (x; q)n = (1− x)(1− qx) · · · (1− qn−1x).
Now, it is shown in [14] that the Gauss sum for Sp(2n, q) is given by:

∑
g∈Sp(2n,q)

ψ(Trg) =

n∑
r=0

∑
g∈PσrP

ψ(Trg),

where ∑
g∈PσrP

ψ(Trg) = |Ar \ P |
∑
g∈P

ψ(Trgσr)

= q(
n+1

2 )|Ar \ P |qr(n−r)arKGL(n−r,q)(ψ; 1)

=

{
0, if r is odd,
q(
n+1

2 )qrn−
1
4 r

2

[nr]q
∏r/2
j=1(q2j−1 − 1)KGL(n−r, q)(ψ; 1), if r is even.

Here a0 = 1, and, for r ∈ Z>0, ar denotes the number of all r × r nonsingular
alternating matrices over Fq, which is given by

ar =

{
0, if r is odd,
q
r
2 ( r2−1)

∏ r
2
j=1(q2j−1 − 1), if r is even.

(cf. [14], Proposition 5.1).
Thus the Gauss sum for Sp(2n, q) is given by∑

g∈Sp(2n,q)

ψ(Trg) = q(
n+1

2 )
∑

0≤r≤n, r even

qrn−
1
4 r

2

[nr]q (8)

×
r/2∏
j=1

(q2j−1 − 1)KGL(n−r, q)(ψ; 1).

By combining (1) with (8), we finally obtain the following result.
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Theorem 2. For any nontrivial additive character ψ of Fq, we have

∑
g∈Sp(2n,q)

ψ(Trg) = qn
2−1

[n2 ]∑
r=0

qr(r+1) [ n2r]q

r∏
j=1

(q2j−1 − 1)

×
[n−2r+2

2 ]∑
l=1

qlK(ψ; 1)n−2r+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1),

where the unspecified sum runs over the set of integers j1, . . . , jl−1 satisfying 2l− 1 ≤
jl−1 ≤ · · · ≤ j1 ≤ n− 2r + 1.

Applications to Hodges’ Kloosterman sums
Assume that q = pd, with p > 2.
The Hodges’ Kloosterman sum over nonsingular alternating matrices, for 2t × 2t

alternating matrices A,B over Fq, is defined as :

Kalt,2t(A,B) =
∑
g

λ(tr (Ag +Bg−1)),

where the sum is over all nonsingular alternating matrices g of size 2t.
From Theorem 6 of [10], and for a ∈ F×q ,

Kalt,2t(
a2

4
C−1, C) = Kalt,2t(

a2

4
J−1

2n , J2n) (9)

= q−n
∑

g∈Sp(2n,q)

λ(a tr g),

where C is any nonsingular alternating matrix of size 2t.
We note here that some of general properties of the Hodges’ Kloosterman sum were

investigated, and, for A or B zero, it was evaluated in [10]. However, it has never
been explicitly evaluated for both A and B nonzero. From the identity in (9) and the
explicit expression of

∑
g∈Sp(2n,q) λ(a tr g), we get an expression forKalt,2t(

a2

4 C
−1, C).

For the connection of similar nature between Gauss sums for classical groups over finite
fields and various weighted partitions of Hodges, one refers to [1], [8], [9] and [11].
In [49], H. Saito reconsidered, without knowing the existence of Hodges’ papers [8]-
[11], certain generalizations of Hodges’ Kloosterman sums, but with only one nonzero
argument and determined their explicit values. His purpose was to apply those to
twisting operators acting on Siegel modular forms and zeta functions associated with
the prehomogeneous vector space of symmetric matrices.

In [25], two exponential sums, one generalizing Hodges’ Kloosterman sums and
the other generalizing Saito’s sums to the ones with two arguments, were suggested.

Applications to counting the number of elements in classical
groups with given traces

Here we apply our results in Section 2.1 to the problem of counting the number
of elements in classical groups with given matrix trace values. Here we treat only
the case for the symplectic group Sp(2n, q). For the other classical groups over finite
fields, one refers to [20]- [24].
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If G(q) is one of the finite classical groups over Fq , then, for each β ∈ Fq, we put

NG(q)(β) = |{g ∈ G(q) |Tr g = β}|.

For ψ a nontrivial additive character of Fq, we have

qNG(q)(β) = |G(q)|+
∑
α∈F×q

ψ(−βα)
∑

g∈G(q)

ψ(αTr g). (10)

Lemma 3. Let ψ be a nontrivial additive character of Fq, β ∈ Fq, and let m be a
nonnegative integer. Then∑

α∈F×q

ψ(−βα)K(ψ;α2)
m

= qδ(m, q;β)− (q − 1)
m
,

where, for m > 1,

δ(m, q;β) = |{(α1, · · · , αm) ∈ (F×q )
m|α1 + α−1

1 + · · ·+ αm + α−1
m = β}| (11)

and
δ(0, q;β) =

{
1, if β = 0,
0, otherwise. (12)

Now, applying (10) to G(q) = Sp(2n, q), and using Theorem 2 and Lemma 3, we
get the following result.

Theorem 4. For each β ∈ Fq, the number of elements NSp(2n,q)(β) of g ∈ Sp(2n, q)
with Tr g = β is given by

qn
2−1

n∏
j=1

(q2j − 1)

plus

qn
2−1

[n/2]∑
r=0

qr(r+1)

[
n
2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

ql
(
δ(n− 2r + 2− 2l, q;β)− q−1(q − 1)

n−2r+2−2l
)

×
∑ l−1∏

ν=1

(qjν−2ν − 1),

where the innermost sum runs over the same set of integers as in Theorem 2, and
δ(m, q;β) is as in (11) and (12).

Applications to constructions of linear codes and power mo-
ments of Kloosterman sums

Here we construct two ternary linear codes associated with the symplectic groups
Sp(2, q) and Sp(4, q). Here q = 3r is a power of three. Then we obtain recursive
formulas for the power moments of Kloosterman sums with square arguments and for
the even power moments of those in terms of the frequencies of weights in the codes.
This is done via Pless power moment identity and by using the explicit expressions
of Gauss sums for the symplectic groups Sp(2n, q). The reader refers to [38] for the
details on this and [12] for a general reference about linear codes.
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One refers to [26]- [31], [36], [39] and [42] for many other papers of similar nature,
which are related to other classical groups. Furthermore, many infinite families of
binary and ternary linear codes were constructed in connection with double cosets
with respect to certain maximal parabolic subgroups of classical groups. Then many
infinite families of recursive formulas for (complete or incomplete) power moments
of Kloosterman sums were obtained in terms of the frequencies of weights in those
codes. These were also done via Pless power moment identity and by using the explicit
expressions of exponential sums over those double cosets related to the evaluations of
Gauss sums for the classical groups. For details on these, one refers to [32]- [35], [37]
and [38].

With q = 3r, for ease of notations, we let

G1(q) = Sp(2, q), G2(q) = Sp(4, q),

and let

N1 = |G1(q)| = q(q2 − 1), N2 = |G2(q)| = q4(q2 − 1)(q4 − 1).

Here we construct two ternary linear codes C(G1(q)) of length N1 and C(G2(q)) of
length N2, respectively associated with the symplectic groups G1(q) and G2(q).

By abuse of notations, for i = 1, 2, let g1, g2, . . . , gNi be a fixed ordering of the
elements in the group Gi(q). Also, for i = 1, 2, we put

vi = (Trg1, T rg2, . . . , T rgNi) ∈ FNiq .

Then, for i = 1, 2, the ternary linear code C(Gi(q)) is defined as

C(Gi(q)) = {u ∈ FNi3 | u · vi = 0},

where the dot denotes the usual inner product in FNiq .
Delsarte’s theorem says that (B|F3

)⊥ = tr(B⊥), for any linear code B over Fq,
and from this it is immediate to see that

C(Gi(q))
⊥ = {ci(a) = (tr(aTrg1), . . . , tr(aTrgNi)) | a ∈ Fq}.

Then we can express the Hamming weights of c1(a) and c2(a) in terms of Kloosterman
sums as in the following (cf. [38, Lemma 11, p. 87]):

w(c1(a)) =
2

3
q(q2 − 1−K(λ; a2)), (13)

w(c2(a)) =
2

3
q4{(q2 − 1)(q4 − 1)− (K(λ; a2)2 + q3 − q)}. (14)

To get the results on the power moments of Kloosterman sums, we need the
following Pless power moment identity.

Lemma 5 (cf. [12, Theorem 7.2.3, p. 257]). Let B be an q-ary [n, k] code, and let
Bi(resp. B⊥i ) denote the number of codewords of weight i in B(resp. in B⊥). Then,
for h = 0, 1, 2, . . . ,

n∑
j=0

jhBj =

min{n,h}∑
j=0

(−1)jB⊥j

h∑
t=j

t!S(h, t)qk−t(q − 1)t−j
(
n− j
n− t

)
, (15)

where S(h, t) is the Stirling numbers of the second kind given by

S(h, t) =
1

t!

t∑
j=0

(−1)t−j
(
t

j

)
jh.
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We now apply the Pless power moment identity in (15) to each C(Gi(q))
⊥, for

i = 1, 2, in order to obtain the results about recursive formulas in Theorem 6 (cf.
(19), (21)).
Then the left hand side of the identity in (15) is equal to∑

a∈F∗q

w(ci(a))h, (16)

with the w(ci(a)) in each case given by (13) and (14).

For i = 1, (16) is

(
2q

3
)h
∑
a∈F∗q

(q2 − 1−K(λ; a2))h

= (
2q

3
)h
∑
a∈F∗q

h∑
j=0

(−1)j
(
h

j

)
(q2 − 1)h−jK(λ; a2)j (17)

= 2(
2q

3
)h

h∑
j=0

(−1)j
(
h

j

)
(q2 − 1)h−jSKj ,

from which (19) follows.
Similarly, for i = 2, (16) equals

2(
2q4

3
)h

h∑
j=0

(−1)j
(
h

j

)
(q6 − q4 − q3 − q2 + q + 1)h−jSK2j , (18)

from which (21) follows.
Here one has to separate the term corresponding to j = h in (17) and (18), and

note dimF3C(Gi(q))
⊥ = r.

Theorem 6. Let q = 3r. Then we have the following.
(a) For h = 1, 2, . . . ,

SKh =
h−1∑
j=0

(−1)h+j+1

(
h

j

)
(q2 − 1)h−jSKj

+ q1−h
min{N1,h}∑

j=0

(−1)h+jC1,j

h∑
t=j

t!S(h, t)3h−t2t−h−j−1

(
N1 − j
N1 − t

)
, (19)

where N1 = |Sp(2, q)| = q(q2 − 1), and {C1,j}N1
j=0 is the weight distribution of the

ternary linear code C(Sp(2, q)) given by

C1,j =
∑(

q2

ν1, µ1

)(
q2

ν−1, µ−1

) ∏
β2−16=0 square

(
q2 + q

νβ , µβ

)

×
∏

β2−1 nonsquare

(
q2 − q
νβ , µβ

)
(j = 0, · · · , N1). (20)

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq and {µβ}β∈Fq
satisfying

∑
β∈Fq νβ +

∑
β∈Fq µβ = j and

∑
β∈Fq νββ =

∑
β∈Fq µββ. In addition,
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S(h, t) is the Stirling number of the second kind defined by

S(h, t) =
1

t!

t∑
j=0

(−1)t−j
(
t

j

)
jh.

(b) For h = 1, 2, . . . ,

SK2h =

h−1∑
j=0

(−1)h+j+1

(
h

j

)
(q6 − q4 − q3 − q2 + q + 1)h−jSK2j

+ q1−4h

min{N2,h}∑
j=0

(−1)h+jC2,j

h∑
t=j

t!S(h, t)3h−t2t−h−j−1

(
N2 − j
N2 − t

)
, (21)

where N2 = |Sp(4, q)| = q4(q2 − 1)(q4 − 1), and {C2,j}N2
j=0 is the weight distribution

of the ternary linear code C(Sp(4, q)) given by

C2,j =
∑(

q4(δ(2, q; 0) + q5 − q2 − 3q + 3)

ν0, µ0

)
×
∏
β∈F×q

(
q4(δ(2, q;β) + q5 − q3 − q2 − 2q + 3)

νβ , µβ

)
(j = 0, . . . , N2). (22)

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq and {µβ}β∈Fq
satisfying

∑
β∈Fq νβ +

∑
β∈Fq µβ = j and s

∑
β∈Fq νββ =

∑
β∈Fq µββ, and, for every

β ∈ Fq, δ(2, q;β) =| {(α1, α2) ∈ (F×q )2 | α1 + α−1
1 + α2 + α−1

2 = β} |.

Conclusion
In this paper, we gave a survey on Gauss sums for classical groups over finite fields.

In addition, we presented three applications of them, namely to Hodges’ Kloosterman
sums, counting the number of elements in classical groups with given traces, and
constructions of linear codes and power moments of Kloosterman sums.

Explicit expressions of the Gauss sums for classical groups were obtained by using
three different ways:
• The first method was to use Bruhat decompositions with respect to certain

maximal parabolic subgroups of the classical groups. We gave a sketch of proof for
the case of the symplectic group Sp(2n, q).
• The second one was to express the Gauss sum for G as the alternating sum of

traces of Frobenius maps acting on Weyl group invariant part of certain cohomology
groups of (G/T )T , where T is a maximal torus of G.
• The third one was to use some consequences of Deligne-Lusztig character theory

of G and structure theory on maximal tori of G.
As the Gauss sums for classical groups were computed by using three completely

different methods, we can naturally expect many interesting identities among them.
The interested reader can compare, for example, the result for the Gauss sum∑

g∈Sp(2n,q)

ψ(Trg)

in (8) with the ones in Theorem 1 of [2] and in Theorem 3.1 of [4]. Some of these
were already noted in [3] and [4].
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A study on Frobenius Euler-type Simsek
numbers and polynomials

Erkan Agyuz

In this work, we give some results and local approximation properties such as
Lipshtsz class for a generalization Szasz-type operators including the generating
function of Frobenius Euler-type Simsek polynomials.

2020 MSC: 11B37, 11B68, 41A10, 41A36

Keywords: Apostol-type polynomials, Generating function, Approximation by
polynomials, Approximation by positive operators

Introduction
The Frobenious Euler-type Simsek polynomials `n(x; v) given by the following

generating function:

F` (x;w, v) :=
wv

v−1∏
j=0

(ew − j)
ewx =

∞∑
n=0

`n(x; v)
wn

n!
(1)

which were recently introduced and investigated by Simsek in [6]. Substituting x = 0
into (1) gives the generating function of the Apostol-type numbers `n(v) as follows:

F` (w, v) :=
wv

v−1∏
j=0

(ew − j)
=

∞∑
n=0

`n(v)
wn

n!
(2)

which is equivalent to the special case f(w) = ew, −→xv = (0, 1, 2, . . . , v − 1) and −→yv =
(1, 1, . . . , 1) of the following meromorphic function:

F1 (w;−→xv,−→yv) =
wv

h (w;−→xv,−→yv)
,

where

h (w;−→xv,−→yv) =

v−1∏
j=0

(f(w)− xj)yj ,

f(w) is an analytic function such that w ∈ R (or C); −→xv = (x0, x1, . . . , xv−1) and −→yv =
(y0, y1, . . . , yv−1) are v-tuples such that v ∈ N and xj , yj ∈ R with j = 0, 1, . . . , v− 1.
See, for detail, [6].

The `n(x; 2) polynomials are defined at the following equation:

w2

ew − 1
ew(x−1) =

∞∑
n=0

`n(x; 2)
wn

n!
. (3)
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The Taylor expansion of the generating function of `n(x; 2) is defined by the fol-
lowing expression:

w

ew − 1
+
w2(x− 1)

ew − 1
+
w3(x− 1)2

2(ew − 1)
+
w4(x− 1)3

6(ew − 1)
+
w5(x− 1)4

24(ew − 1)
+

w6(x− 1)5

120(ew − 1)

+O
(
(x− 1)6

)
.

By using the Taylor expansion of `n(x; 2), this series converges everywhere and posi-
tive at x ∈ (1,∞).

The Szasz type operators which involving the generating function of `n(x; 2) were
defined to be as:

Ln(f ;x) = (e2 − e)e−nx
∞∑
k=0

`k(x; 2)

k!
f

(
k

n

)
. (4)

The moment and second-order central moment functions for the operator in equation
(4) were obtained as follows:

Ln(1;x) = 1,

Ln(s;x) = x− e

(e− 1)n
,

Ln(s2;x) = x2 +
3e− 1

e− 1

x

n
+
−e2 + 4e− 1

n2(e− 1)2
,

and

Ln((s− x)2;x) =
x

n
+
−e2 + 4e− 1

n2(e− 1)2
.

Remark 1. The convergence of the operator using moment and second-order moment
functions and the approximation error estimation with the help of the modulus of
continuity were investigated in [1].

Main results
In this section, we estimate the approximation error of the operator defined in (7)

using approximation tools such as the Lipsithz class and the Peetre-K functional.
The definition of the Lipschitz class is defined to be

Definition 1. Lipschitz class of order α, express Lip1 (α;K) (0 < α ≤ 1, K > 0), is
defined by

Lip1 (α;K) := {f ∈ C ([0, 1]) : |f(t)− f(x)| ≤ K |t− x|α , t, x ∈ [0, 1]} ,

where C([0, 1]) is the set of spaces of continuous functions.

By using the monotonic property of Ln(f, x), we obtain

|Ln (f ;x)− f (x)| ≤ KLn (|t− x|α ;x) .

By applying Hölder inequality at the above inequality, we give

|Ln (f ;x)− f (x)| ≤ K
(
Ln

(
(e1 − x)

2
;x
))α/2

.

The last inequality above gives the following theorem:
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Theorem 2. Let f ∈ Lip1 (α;K) . For x ∈ [0, 1], we have

|Ln (f ;x)− f (x)| ≤ K
√
ςαn (x),

where ςn (x) = Ln((s− x)2;x).

The aforementioned lemmas provide some characteristics of the central moment
functions of Ln(f ;x):

Corollary 3. With respect to the operators Ln(f ;x), we give

Ln((e1 − e0x);x) ≤ 1.58

n

Ln((e1 − e0x)2;x) ≤ 1

n
+

0.841

n2
.

Corollary 4. The following expressions hold true:

lim
n→∞

nLn((e1 − e0x);x) = 1,

lim
n→∞

nLn((e1 − e0x)2;x) = x.

Conclusion
In this paper, a theorem for the local approximation property for Szasz-type op-

erators involving generating functions of Frobenious-Euler type Simsek polynomials
given in [1], and two new results for the operator with the help of central moment
functions are obtained.
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Observations on the Dedekind zeta function
at negative integers with their applications

Ecem Ates ∗1 and Yilmaz Simsek 2

The motivation of this presentation is to survey and study the connections
between the negative integer values of the known Dedekind zeta function related
to Bernoulli numbers on different finite fields.
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Keywords: Riemann zeta function, Dirichlet L-functions, Dedekind zeta, Bernoulli
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Introduction
The norm of an ideal is a generalization of a norm of an element in the field

extension. Let Z be the ring of integers. The norm of a nonzero ideal a of a number
ring R is simply the size of the finite quotient ring R/a.

The Riemann zeta function can also be interpreted as the sum of Na−s over all
ideals, a = (n) of the ring Z. Thus the norm of a = (n) is equal to N(n) = |n|, which
is the number of elements Z/nZ. Consequently, summation over ideals means that n
and −n (for n ∈ N ) only contribute n−s. The number Na is a norm of an ideal a.

For instance, let K = Q(i) and Z[i] be a ring of Gaussian integers. Thus, each
ideal (x + iy) (x, y ∈ Z) has unique representative in the first quadrant. Hence one
has

ζK(s) =
∑
a6=0

Na−s =
∑
x,y≥0

(x,y)6=0

1

(x2 + y2)s
. (1)

Similar to the Riemann zeta function, unique factorization in Z[i] implies that the
function on Z[i] admits the following Euler factorization:

ζK(s) =
∏ 1

1−Nπ−s
. (2)

There are exactly two primes π above primes. Due to these primes, in Z[i], we have
the Euler product not only for p ≡ 1 (mod 4):∏

p≡1 (mod 4)

1

(1− p−s)2
,

but also, for the primes p ≡ 3 (mod 4), remain inert in Z[i] and have norm p2,∏
p≡3 (mod 4)

1

1− p−2s

(cf. [5, p. 13-14]).
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And we know that,

ζK(s) =
∏

p≡3 (mod 4)

1

1− 2−s

∏
p≡1 (mod 4)

1

(1− p−s)2

∏
p≡3 (mod 4)

1

1− p−2s
.

Thus
ζK(s) = ζ(s)

∏
p≡1 (mod 4)

1

(1− p−s)

∏
p≡3 (mod 4)

1

(1 + p−s)
. (3)

Therefore,
ζK(s) = ζ(s)L(s, χ), (4)

where L(s, χ) denotes the Dirichlet L-Series with the character (−4
◦ ), which is defined

with the Euler product as follows:

L(s, χ) =
∏

p:prime

1

1− χ(p)p−s
, (5)

where s > 1 (cf. [5, p. 13-14]). When χ(n) is a the Dirichlet character, which is a
multiplicative function, one also has

L(s, χ) =
∑
n≥1

χ(n)

ns
. (6)

Using the following well-known results

L(1, χ) = 1− 1

3
+

1

5
− 1

7
+ ... =

π

4

and
π

4
=

1∫
0

dx

x2 + 1
,

it is easy to see that the function L(s, χ) is converges at s = 1. It also converges to a
non-zero limit when s → 1. Multiplying equation (4) by s− 1 and s → 1, one easily
has

lim
s→1

(s− 1)ζK(s) =
π

4
(7)

in K = Q(i) (cf. [5, p. 13-14]).
We now give the Dedekind zeta function. This function was firstly defined by Ger-

man mathematician Julius Wilhelm Richard Dedekind (6 October 1831-12 February
1916). This function is a member of the Dirichlet series. This is defined by

ζK(s) =
∑
a6=(0)

Na−s, (8)

where s ∈ C with Re(s) > 1, K is an algebraic number field (number field). An
algebraic number field is an extension field K of the field of rational numbers Q such
that the field extension K/Q has finite degree. K is a field that contains Q. a ranges
through the non-zero ideals of the ring of integers O ⊆ Z, OK of K and Na denotes the
absolute norm of a (which is equal to both the index [OK : a] of a in OK or equivalently
the cardinality of quotient ring OK/a). This sum converges absolutely for all complex
numbers s with real part Re s > 1 (cf. [5, 9, 10]).
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Substituting K = Q into (8), the Dedekind zeta function ζK(s) reduces to that of
the Riemann zeta function; that is

ζ(s) := ζQ(s) =

∞∑
n=1

1

ns
,

where Re s > 1.
This function has the following unique factorization into prime ideals:

ζK(s) =
∏

p6=(0)

1

1−Np−s
,

where the product is over all prime ideals p 6= (0).
In 1937, Siegel proved that ζK(2m) satisfies the following relation:

ζK(2m) = rational × π2dm

√
DK

,

where m is a positive integer, K is any totally real number field with discriminant DK
and d is the degree of K over Q. When K is real quadratic number field, the values
of the ζK(2m) are related to Bernoulli numbers similar to the

ζ(2m) = (−1)
m (2π)

2m
B2m

2 (2m)!

(cf. [3]), where Bm denotes the Bernoulli numbers, which are defined by means of the
following generating function:

∞∑
m=0

Bmt
m =

t

et − 1

with |t| < 2π.
Let K =Q(α) where α satisfies a polynomial of degree n with n real roots. D is a

discriminant of the field K. Substituting s = 1− 2m and s = −2m with m ∈ N into
(4), and combining the following well-known results for the Riemann zeta function at
the negative integers

ζ(−2m) = −B2m+1

2m+ 1
= 0

since B2m+1 = 0 for m ∈ N and

ζ(1− 2m) = −B2m+2

2m+ 2
,

where B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0,..., we have

ζK(1− 2m) =
B2m

4m2
D2m−1

D∑
n=1

χ(n)B2m

(
i

D

)
, (9)

and
ζK(1− 2m) =

(−1)m(2m− 1)!

22m−1π2m
D2m−1/2ζK(2m) (10)

where i2 = −1 see, for detail [8].
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We modified equation (9) as follows:

ζK(1− 2m) =
B2m

4m2
D2m−1

D∑
n=1

χ(n)

2m∑
v=0

(
2m

v

)
iv

Dv
Bv.

Some special known values of the ζK(1− 2m) are given as follows:
Putting m = 1 in (9) and (10), and using

ζ(1− 2m) =
(−1)m.(2m− 1)!

22m−1π2m
ζ(2m), (11)

and K = Q(
√

5) with p ≡ 1 (mod 4) a prime number, we also have the following
well-known formula:

ζK(−1) =
1

24p

p−1∑
j=1

(
j

p

)
j2,

where
(
j
p

)
is the Legendre-Jacobi symbol. Since

B2(x) = x2 − x+
1

6
,

we have

ζK(−1) =
1

24D

D−1∑
n=1

χ(n)n2

(cf. [8]). Thus, for K =Q(
√

5) and K =Q(
√

13), we have the following values of
ζK(−1), respectively:

ζK(−1) =
12 − 22 − 32 + 42

120

=
1

30
.

and

ζK(−1) =
12 − 22 + 32 + 42 + 52 − 62 − 72 − 82 + 92 + 102 − 112 + 122

13.24

=
1

6
.

Is it possible to give general formula for ζK(−1) on K =Q(
√
p), p is prime number?

Conclusion
The main goal of this study is to investigate and examine the relations between

well-known some of values of on the Dedekind zeta function at the negative integers
on different finte fields and related ideals of the ring of integers. Our future project
will be combined these relations and other certain family of special numbers and
polynomials with the aid of characters and norms of the ideals.
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Applying the operator Yλ,β(f ; a, b) to
Derangement polynomials

Elif Bozo ∗1 and Yilmaz Simsek 2

The aim of this presantation is to investigate applications of the operator
Yλ,β(f ; a, b) to the certain family of special polynomials. By using these appli-
cations, we give some new formulas including the Derangement polynomials.
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Keywords: Generating functions, Derangement numbers, Finite sums, Abel
polynomials, Harmonic numbers, Operator

Introduction

Operator
Let a and b be real parameters. Let λ and β be real or complex parameters. In

this section, we give applications of the operator Yλ,β(f : a, b), which introduced by
the second author (cf. [6]):

Yλ,β [f : a, b](x) = λEa[f ](x) + βEb[f ](x), (1)

where Ea[f ] is well-known shift:

Ea[f ](x)] = f(x+ a).

In the special case λ = 1, β = 0 and b = 0 ,we have

Y1,0[f : a, 0](x) = Ea[f ](x). (2)

Let k ∈ N. Since

Y kλ,β [f ; a, b] = Yλ,β [f ; a, b]
(
Y k−1
λ,β [f ; a, b]

)
, (3)

we have

Y kλ,β [f ; a, b] =

k∑
j=0

(
k

j

)
λk−jβjf(x+ jb+ (k − j)a), (4)

(cf. [6]).
A Derangement of an ordered set of objects is a way of rearranging the objects

so that none appears in its original position. A Derangement of (1, 2, 3, . . . , n), for
example, is an arrangement (x1, x2, x3, . . . , xn) of the first n integers in which xi = i
never occurs.(cf. [8, p. 96]).

The derangement numbers dn, which have many applications in enumerative com-
binatorics analysis, are given by meas of the following generating function:

T (t) =
e−t

1− t
=

∞∑
n=0

dn
tn

n!
. (5)
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(cf. [2, p. 171], [7], [8, p. 97]).
By using (5), for n ∈ N0, we have

dn = n!

n∑
j=0

(−1)j

j!
, (6)

(cf. [2, p. 171], [7], [8, p. 97]).
The derangement polynomials are defined by means of the generating function:

e(x−1)t

1− t
=

∞∑
n=0

Dn(x)
tn

n!
,

which yields

D(x) =

n∑
k=0

(
n

k

)
dkx

n−k (7)

= n!

n∑
k=0

(x− 1)k

k!

(cf. [2, p. 171], [7], [8, p. 97]).

Main results
In this section, by applying the operator Yλ,β(f : a, b) to the derangement poly-

nomials D(x) which are given in (7), we derive some formulas.
By applying (cf. [6]) to (7), we get

Yλ,β [Dn : a, b](x) = λEa (Dn(x)) + βEb (Dn(x))

Thus, we have
Yλ,β [Dn : a, b](x) = λDn(x+ a) + βDn(x+ b).

By applying the above operator application k times consecutively, the following
result is obtained with the help of equation (4):

Y kλ,β [Dn : a, b] (x) =

k∑
j=0

(
k

j

)
λk−jβjDn(x+ jb+ (k − j)a).

Thus we have

Y kλ,β [Dn : a, b] (x) = n!

k∑
j=0

(
k

j

)
λk−jβj

n∑
v=0

(x+ jb+ (k − j)a− 1)v

v!
.

After some elemantary calculations, we arrive at the following theorem:

Theorem 1. Let T ⊆ N. Then we have

n!

k∑
j=0

(
k

j

)
λk−jβj

n∑
v=0

(x+ jb+ (k − j)a− 1)v

v!
(8)

=

k∑
j=0

(
k

j

)
λk−jβjDn(x+ jb+ (k − j)a).

Substituting a = 0 and b = 1 into (8), we get
k∑
j=0

(
k

j

)
λk−jβjDn(x+ j) = n!

k∑
j=0

(
k

j

)
λk−jβj

n∑
v=0

(x+ j − 1)v

v!
.
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Conclusion
The goal of this work is to give applications of the operator Yλ,β(f ; a, b). There

are many application s of this operator. By applying the this operator k times consec-
utively to the Derangement polynomials, with the aid of result, we derived some new
formulasof the Derangement polynomials. Our future project will be deeaply study
on this operator with its applications.
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Remarks on q-Hardy-Berndt type sums
Elif Cetin

In the study mentioned as [28], Simsek defined a new function called F (t, q).
He used this function to create generating functions for the q-Hardy-Berndt
type sums, which are related to classical Hardy-Berndt sums, Simsek sums, and
various other well-known special sums. This study aims to establish connections
between q-Hardy-Berndt type sums and some finite special sums, defined in [9],
by employing the F (t, q) function and considering specific cases of the generating
functions, as presented in [28].
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Properties of multilinear fractional wavelet
transforms on some function spaces

Elif Gürbüz ∗1 and Öznur Kulak 2

In this paper, we give relationship between the continuous multilinear frac-
tional wavelet transform and Fourier transform. Lastly, we consider bound-
edness of the continuous multilinear fractional wavelet transform on weighted
Lebesgue spaces.

2020 MSC: 42B10, 47B38

Keywords: Multilinear fractional wavelet transform, multilinear fractional Fourier
transform, Weighted Lebesgue spaces.

Introduction
In this paper, the spaces S (R) denotes as the Schwartz class of functions on R, i.e.,

infinitely differentiable copmlex-valued functions, rapidly decreasing at infinity [2].
For 1 ≤ p < ∞, the spaces Lp (R) denotes the usual Lebesgue space 1001[10]. Let
(X, ‖.‖X) be Banach algebra i.e., complete normed space, algebra, and ‖x · y‖X ≤
‖x‖X ‖y‖X for all x, y ∈ X. A Banach space (B, ‖.‖B) is called Banach module X if
B is a module overX in the algebraic sense for some multiplication, (u, v) −→ u·v, and
satisfies ‖u · v‖B ≤ ‖u‖X ‖v‖B for all u ∈ X, v ∈ B. If the function ω is positive reel
valued, measurable and locally bounded on R and satisfies the inequalities ω (x) ≥ 1,
ω (x+ y) ≤ ω (x)ω (y) for all x, y ∈ R [10]. The weight function ω (x) = (1 + |x|)a is
said polynominal type such that ω ≤ v. For 1 ≤ p <∞, the weighted Lebesgue space
is defined by Lpw (R) = {f : fw ∈ Lp (R)} [10]. Lpw (R) is a vector space, where

‖f‖p,w =


∫
Rn

|f (x)|p w (x)
p
dx


1
p

and it is a Banach space according to the norm [10]. The multilinear mother wavelet
is defined by:

ψb,a (t) =

n∏
j=1

Tbjψ
aj
j (tj) = |a|−

1
2

n

n∏
j=1

ψj

(
tj − bj
aj

)
,

for all t = (t1,..., tn) ∈ Rn (cf. [3]). The multilinear fractional mother wavelet with
multi-angle θ = (θ, ..., θn) is defined by:

ψb,a,θ (t) = |a|−
1
2

n

n∏
j=1

ψj

(
tj − bj
aj

)
e−

i
2 (t2j−b

2
j) cot θj ,

where b = (b1, ..., bn) , t = (t1,..., tn) ∈ Rn and a = (a1, ..., an) ∈ Rn+ [4]. We will
use the notation |a|n = a1a2...an. Let f = (f1, ..., fn) ,g = (g1, ..., gn) ∈ S (R)

n
=
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S (R)× ...× S (R). For all t = (t1,..., tn) ∈ Rn, the multilinear fractional convolution
of f and g is defined as:

(f ∗θ g) (t) =

n∏
j=1

(
fj ∗θj gj

)
(tj) , (1.1)

where ∗θj , (j = 1, ..., n) denotes the fractional convolution (cf. [3]).
Let f = (f1, ..., fn) , ψ = (ψ1, ..., ψn) ∈ S (R)

n. Assume that ψb,a,θ is a multilinear
fractional mother wavelet. The multilinear continuous fractional wavelet transform
of f with a multi-angle θ is defined by:

W θ
ψf (b, a) =

∫
Rn

f (t)ψb,a,θ (t)dt =
〈
f , ψb,a,θ

〉

= |a|−
1
2

n

∫
Rn

f (t)

n∏
j=1

ψj

(
tj − bj
aj

)
e−

i
2 (t2j−b

2
j) cot θjdt,

for all (b, a) ∈ Rn × Rn+ (cf. [3]). Let ψ = (ψ1, ..., ψn) ∈ S (R)
n. Then,

W θ
ψf (b, a) = e−

i
2 b

2 cot θ
n∏
j=1

(
e
i
2 (.)2 cot θjfj ∗ ψ

aj
j

)
(bj) ,

and

W θ
ψf (b, a) =

n∏
j=1

(
fj ∗θj ψ

aj
j

)
(bj) = (f∗θψa) (b) ,

holds for all f = (f1, ..., fn) ∈ Lp (R)
n

[4]. Let f = (f1, ..., fn) ∈ S (R)
n. The mul-

tilinear continuous fractional Fourier transform of f with a multi-angle θ is defined
as:

F θf (w) =

∫
Rn

f (t) Kθ (t, w) dt =

∫
Rn

f (t)

n∏
j=1

K
θj
j (tj , wj) dt, (1.2)

where K
θj
j (tj , wj) is kernel given by (1.2) and Cθ = (2πi sin θ)

− 1
2 e

iθ
2 [4].

Let f = (f1, ..., fn) ,g = (g1, ..., gn) ∈ L2 (R)
n. If ψ = (ψ1, ..., ψn) , ϕ = (ϕ1, ..., ϕn) are

multi- wavelets in S (R)
n, then it’ s written that∫

Rn

∫
Rn+

W θ
Ψ (b, a)W θ

ϕ (b, a)
dbda

|a|2n
= (2π)

n
n∏
j=1

sin θjCψj,θj 〈fj , gj〉 ,

where

Cψj,θj =

∫
R+

F θj
(
e−

i
2 (.)2 cot θjψj

)
(aj)F

θj
(
e−

i
2 (.)2 cot θjϕj

)
(aj) a

−1
j daj <∞

for (j = 1, ..., n) (cf. [3]). Let f = (f1, ..., fn) ∈ L2 (R)
n. If ψ = (ψ1, ..., ψn) is multi-

wavelet in S (R)
n, then f can be reconstructed by the following equation:

f (t) = (2π)
−n

n∏
j=1

1

sin θjCψj ,θj

∫
Rn

∫
Rn+

W θ
ψf (b, a)ψb,a,θ (t)

dbda

|a|2n

(cf. [3]).
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In the literature, Many researchers have done research on wavelet transform and
fractional wavelet transform [1, 4, 5, 9, 6, 7, 8]. On some function spaces, some
properties of the fractional wavelet transform and the ftactional Fourier transform
were adapted to a multilinear form. So multilinear fractional transforms will make
possible investigate the signal representations and local structures of signals in the
n-dimensional fractional space.

Main results
In this section, firstly, we will give relationship between the continuous fractional

multilinear wavelet transform and Fourier transform.

Theorem 1. Let f = (f1, ..., fn) ∈ L2 (R)
n and let ϕ = (ϕ1, ...ϕn) be a multi-wavelet

in S (R)
n. Then multilinear fractional Fourier transform is given by

F θf (w) = (2π)
−n

n∏
j=1

1

sin θjCψj,θj

∫
Rn

∫
Rn+

W θ
Ψ (b, a)F θψb,a,θ (w)

dbda

|a|2n
.

Proof. Take any f ∈ S (R)
n. Then we have

F θf (w) =

∫
Rn

f (t)Kθ (t, w) dt

=

∫
Rn

f (t)

n∏
j=1

K
θj
j (tj , wj) dt

=

∫
R

...

∫
R

f1 (t1) ...fn (tn)Kθ1
1 (t1, w1) ...Kθn

n (tn, wn) dt1...dtn

=

∫
R

f1 (t1)Kθ1
1 (t1, w1) dt1

 ...

∫
R

fn (tn)Kθn
n (tn, wn) dtn


= F θ1f1 (w1) ...F θnfn (wn)

=

n∏
j=1

F θjfj (wj) . (1)

On the other hand, it’s known that

F θjfj (wj) = (2π)
−1 1

sin θjCψj ,θj

∫
R

∞∫
0

W
θj
ψj
fj (bj , aj)F

θjψ
bj ,aj ,θj
j (wj)

dbjdaj
a2
j

(2.2)

for (j = 1, ..., n) (cf. [9]). Using the equalities (2.1) and (2.2), we achieve

F θf (w) =

n∏
j=1

F θjfj (wj)

= F θ1f1 (w1) ...F θnfn (wn)

= (2π)
−1 1

sin θ1Cψ1,θ1

∫
R

∞∫
0

W θ1
ψ1
f1 (b1, a1)F θ1ψb1,a1,θ1

1 (w1)
db1da1

a2
1

×
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...× (2π)
−1 1

sin θnCψn,θn

∫
R

∞∫
0

W θn
ψn
fn (bn, an)F θnψbn,an,θnn (wn)

dbndan
a2
n

= (2π)
−1

n∏
j=1

1

sin θjCψj ,θj

∫
R

...

∫
R

∞∫
0

...

∞∫
0

W θ1
ψ1
f1 (b1, a1) ...W θn

ψn
fn (bn, an)

×F θ1ψb1,a1,θ1
1 (w1) ...F θnψbn,an,θnn (wn) db1...dbn

da1

a2
1

...
dan
a2
n

= (2π)
−n

n∏
j=1

1

sin θjCψj ,θj

∫
Rn

∫
Rn+

 n∏
j=1

W
θj
ψj
fj (bj , aj)

 n∏
j=1

F θjψ
bj ,aj ,θj
j (wj)

dbda

|a|2n

= (2π)
−n

n∏
j=1

1

sin θjCψj,θj

∫
Rn

∫
Rn+

W θ
Ψ (b, a)F θψb,a,θ (w)

dbda

|a|2n
.

Theorem 2. Let wj, (j = 1, ..., n) be polynominal type weight function and let be

w (b) =
n∏
j=1

wj (bj). Suppose that Ψ = (Ψ1, ...Ψn) ∈ S (R)
nis multi-wavelet. Then,

∥∥(W θ
Ψf
)

(., a)
∥∥
Lpw(Rn)

≤ |a|
1
2
n w (a)

n∏
j=1

‖fj‖Lpwj (R)

n∏
j=1

‖Ψj‖L1
wj

(R)

holds for all f = (f1, ..., fn) ∈ Lpw (R)
nand for any a ∈ Rn+.

Proof. Let a ∈ Rn+. If we use Theorem 1 in [3], we achieve

∥∥(W θ
Ψf
)

(., a)
∥∥
Lpw(Rn)

=

∥∥∥∥∥∥e− i
2 b

2 cot θ
n∏
j=1

(
e
i
2 (.)2 cot θjfj ∗Ψ

aj
j

)∥∥∥∥∥∥
p

Lpw(Rn)

=

∥∥∥∥∥∥
n∏
j=1

(
e
i
2 (.)2 cot θjfj ∗Ψ

aj
j

)∥∥∥∥∥∥
p

Lpw(Rn)

=

∫
Rn

∣∣∣∣∣∣
n∏
j=1

(
e
i
2 (.)2 cot θjfj ∗Ψ

aj
j

)∣∣∣∣∣∣
p

w (b) db

=

∫
R

. . .

∫
R

∣∣∣∣∣∣
n∏
j=1

(
e
i
2 (.)2 cot θjfj ∗Ψ

aj
j

)∣∣∣∣∣∣
p

w1 (b1) . . . wn (bn) db1 . . . dbn

=

∫
R

. . .

∫
R

∣∣∣(e i2 (.)2 cot θ1f1 ∗Ψa1
1

)∣∣∣p . . . ∣∣∣(e i2 (.)2 cot θnfn ∗Ψan
n

)∣∣∣p w1 (b1) . . . wn (bn) db1 . . . dbn

=

∫
R

∣∣∣(e i2 (.)2 cot θ1f1 ∗Ψa1
1

)∣∣∣p w1 (b1) db1

 . . .

∫
R

∣∣∣(e i2 (.)2 cot θnfn ∗Ψan
n

)∣∣∣p wn (bn) dbn


=
∥∥∥e i2 (.)2 cot θ1f1 ∗Ψa1

1

∥∥∥p
Lpw1

(R)
. . .
∥∥∥e i2 (.)2 cot θnfn ∗Ψan

n

∥∥∥p
Lpwn (R)
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=

∥∥∥∥∥∥
n∏
j=1

(
e
i
2 (.)2 cot θjfj ∗Ψ

aj
j

)∥∥∥∥∥∥
p

Lpwj (R)

.

We know that Lpwj (R) is Banach module over L1
wj (R), (j = 1, ..., n). So using last

equality, ∥∥(W θ
Ψf
)

(., a)
∥∥
Lpw(Rn)

=

n∏
j=1

∥∥∥(e i2 (.)2 cot θjfj ∗Ψ
aj
j

)∥∥∥p
Lpwj (R)

≤
n∏
j=1

∥∥∥e i2 (.)2 cot θjfj

∥∥∥p
Lpwj (R)

∥∥Ψ
aj
j

∥∥p
L1
wj

(R)

=

n∏
j=1

‖fj‖pLpwj (R)

n∏
j=1

∥∥Ψ
aj
j

∥∥p
L1
wj

(R)
. (2.3)

Using that wj is polynominal type and changing variable x
aj

= uj , (j = 1, ..., n),
then we have∥∥Ψ

aj
j

∥∥p
L1
wj

(R)
=

∫
R

∣∣Ψaj
j (x)

∣∣wndx =

∫
R

a
− 1

2
j

∣∣∣∣Ψj

(
x

aj

)∣∣∣∣wj (x) dx

=

∫
R

a
− 1

2
j |Ψj (uj )|wj (ajuj ) ajduj

= a
1
2
j

∫
R

|Ψj (uj )|wj (ajuj ) duj

≤ a
1
2
j

∫
R

|Ψj (uj )|wj (aj)wj (uj) duj

= a
1
2
j wj (aj)

∫
R

|Ψj (uj )|wj (uj ) duj

= a
1
2
j wj (aj)

∥∥Ψ
aj
j

∥∥
L1
wj

(R)
. (2)

Combing (2.3) and (2.4), we obtain

∥∥(W θ
Ψf
)

(., a)
∥∥
Lpw(Rn)

≤
n∏
j=1

‖fj‖pLpwj (R)

n∏
j=1

a
1
2
j wj (aj)

∥∥Ψ
aj
j

∥∥p
L1
wj

(R)

=

n∏
j=1

a
1
2
j wj (aj)

n∏
j=1

‖fj‖pLpwj (R)

n∏
j=1

∥∥Ψ
aj
j

∥∥p
L1
wj

(R)

=

n∏
j=1

a
1
2
j

n∏
j=1

wj (aj)

n∏
j=1

‖fj‖pLpwj (R)

n∏
j=1

∥∥Ψ
aj
j

∥∥p
L1
wj

(R)

= |a|
1
2
n w (a)

n∏
j=1

‖fj‖Lpwj (R)

n∏
j=1

‖Ψj‖L1
wj

(R) .
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Observations on computational formula of
the Bernoulli numbers and combinatorial
numbers and polynomials via determinant

method
Ezgi Polat ∗1 and Yilmaz Simsek 2

Computational methods that can be used to create mathematical models
for real-world problems are crucial in almost all interdisciplinary fields span-
ning mathematics, science and engineering. The purpose of this presentation
is to examine and investigate computational formulas for special numbers and
polynomials by blending some new and old methods. With the help of the de-
terminant method, computational formulas of the Bernoulli numbers, as well as
formulas involving a certain family of combinatorial numbers and polynomials,
and open questions will be brought to light.

2020 MSC: 11B68, 11B83, 05A15, 15A15

Keywords: Bernoulli numbers, Generating functions, Determinant method, Sim-
sek numbers and polynomials

Introduction
Computational methods and computational formulas have been many applications

not only in pure and applied mathematics involving , but also in the physical, biologi-
cal, social, and behavioral sciences, and computational nature focusing on analysis of
algorithms, and numerical analysis. Throughout, of this survey paper, we use nota-
tions and some formulas book of Pap [11]. In this book, Pap gave determinat method
in order to evaluate numerical values of the Bernoulli numbers.

Setting ∑∞
n=0 αn(z − a)n∑∞
n=0 βn(z − a)n

=

∞∑
n=0

δn(z − a)n, (1)

where |z − a| < R, R > 0 and β0 6= 0 (cf. [11, p.148]).
How can one express an explicit formula for the coefficients δn? By using (1), one

has
∞∑
n=0

αn(z − a)n =

( ∞∑
n=0

δn(z − a)n

)( ∞∑
n=0

βn(z − a)n

)
.

By using the Cauchy product rules with the uniqueness of the expansion in power
series in the disc {z| |z − a| < R} yields

∞∑
n=0

αn(z − a)n =

∞∑
n=0

n∑
k=0

δkβn−k(z − a)n.
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It is known from the inspiration of the equality of the power series that since the
coefficients in the above equation (z − a)n are equal, the following results can be
easily calculated:

α0 = δ0β0, (2)
α1 = δ0β1 + δ1β0,

α2 = δ0β2 + δ1β1 + δ2β0,

...
αn = δ0βn + δ1βn−1 + δ2βn−2 + . . .+ δnβ0

...

The above table gives us an infinite system of linear equations with unknown
δ0, δ1, δ2, . . . , δn, . . .. It can be easily observed that the system of linear equations
mentioned above has a special structure. Because for every value of n, the first n+ 1
equations include only the first n+ 1 unknown δk.

As a result, the solution according to the well-known determinant method can be
briefly given as follows:

δn =
1

βn+1
0

∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 0 α0

β1 β0 0 0 α1

β2 β1 β0 0 α2

...
...

...
. . .

...
βn βn−1 βn−2 . . . αn

∣∣∣∣∣∣∣∣∣∣∣
, (3)

where ∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 0 α0

β1 β0 0 0 α1

β2 β1 β0 0 α2

...
...

...
. . .

...
βn βn−1 βn−2 . . . αn

∣∣∣∣∣∣∣∣∣∣∣
= βn+1

0 6= 0

(cf. [11, p.149]).
For the above method, we give the following well-known example for the Bernoulli

numbers, which are defined by means of the following generating function:

t

et − 1
=

∞∑
n=0

Bn
n!
tn.

The function t
et−1 can be written as power series of the fraction of two analytic

functions. That is
t∑∞

n=1
1
n! t

n
=

∞∑
n=0

Bn
n!
tn.

Therefore

t =

( ∞∑
n=0

Bn
n!
tn

)( ∞∑
n=1

1

n!
tn

)
,

where B0 = 1 and 1
1! 6= 0. Then combining the above equation with (2) and (3)

yields the following computational formula for the Bernoulli numbers, with the aid of
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determinant method:

δn =
(−1)n

αn0

∣∣∣∣∣∣∣∣∣∣∣

1
2!

1
1! 0 0 0 . . . 0

1
3!

1
2!

1
1! 0 0 . . . 0

1
4!

1
3!

1
2!

1
1! 0 . . . 0

...
...

...
...

...
. . . 0

1
(n+1)!

1
n!

1
(n−1)!

1
(n−2)!

1
(n−3)! . . . 1

2!

∣∣∣∣∣∣∣∣∣∣∣
=
Bn
n!
, (4)

where δ0 = 1 and Bn denotes the Bernoulli numbers.
The formula in (4) was proofed by Pap [11, p.149] in 1999. Unfortunately, the

same proof given by Chen [3] in 2003.
By using (1), Gradshteyn and Ryzhik [4, p. 17] gave another determinant method.

That is ∑∞
k=0 bkx

k∑∞
k=0 akx

k
=

1

a0

∞∑
k=0

ckx
k,

where

cn +
1

a0

n∑
k=1

cn−kak − bn = 0

or

cn =
(−1)n

an0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1b0 − a0b1 a0 0 . . . 0
a2b0 − a0b2 a1 a0 . . . 0
a3b0 − a0b3 a2 a1 . . . 0

...
...

...
...

...

an−1b0 − a0bn−1 an−2 an−3
. . . a0

anb0 − a0bn an−1 an−2 . . . a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
see also [18, p. 693].

Further remarks and observations
In [14], the second author constructed the following generating functions:

2

λ(1 + λt)− 1
=
∞∑
n=0

Yn(λ)
tn

n!

and
2(1 + λt)x

λ(1 + λt)− 1
=

∞∑
n=0

Yn(x;λ)
tn

n!
.

In [10], Kucukoglu and Simsek, generalized the polynomials Yn(x;λ) and the number
Yn(λ). After that, Khan et al. [6]- [5] constructed the 2-variable Simsek polynomials,
which are given as follows:

2(1 + λt)x(1 + βt2)y

λ(1 + λt)− 1
=

∞∑
n=0

Yn(x, y;λ, β)
tn

n!
.

They investigated some properties of these polynomials. Thus they gave relation
among the polynomials Yn(x, y;λ, β), the Changhee polynomials, the Daehee polyno-
mials, and also the Cauchy numbers, the Changhee numbers, the Daehee numbers,
and the Simsek numbers. They also show that the polynomials Yn(x, y;λ, β) can
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be represented by hypergeometric function. The graphical representations of the
2-variable Simsek polynomials were given for appropriate values of the index n and
parameters λ and β. They also found the derivation of non-linear differential equation
and related identities for the Simsek numbers.

The motivation of this paper is find generalizaton of the 2-variable Simsek poly-
nomials of order w ∈ C, set of complex numbers.

In [8], Kucukoglu constructed the following generating functions for the several
variables multiparametric Hermite-based Simsek polynomials:

ezt+y1t+y2t
2+···+ymtm2k

k∏
j=1

(
1 + ωjt

j
)xj

k∏
j=1

(ωj (1 + ωjt)− 1)

=

∞∑
n=0

HY
(k)
n (−→x ,−→y , z,−→ω ,m, k)

tn

n!
, (5)

(cf. [8]).
By using the above equation (5), we define the following generating function for

the Simsek polynomials of complex number order:

2z(1 + λt)x

(λ2t+ λ− 1)
z =

∞∑
n=0

Y (z)
n (x;λ)

tn

n!
,

where z ∈ C, x ∈ R and λ ∈ C (or R).
We investigate many properties of the above generating function and the polyno-

mials Y (z)
n (x;λ) on complex z-plane.

Conclusion
In this work, we surveyed and researched computational formulas for certain fam-

ily of special numbers and polynomials by using generating functions and determinant
methods. Using determinant method, computational formulas of the Bernoulli num-
bers, as well as formulas involving a certain family of combinatorial numbers and
polynomials were given. Some open questions were also given.

Our future project is to give another generalizations of the polynomials Yn(x;λ).
Using these generalizations, we will study and research some computational formula
for generalizations of the polynomials Yn(x;λ), and generalizations of the numbers
Yn(λ) with aid of determinant method, as well as investigate application of the poly-
nomials Y (z)

n (x;λ).
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Behavior of the generating function for
combinatorial numbers under the difference

operator
Elif Sukruoglu ∗1 and Yilmaz Simsek 2

The main purpose of this presentation is to investigate the behavior of the
certain classes combinatorial numbers involving higher order binomial coeffi-
cients under the difference operator. By using applications of this operator, we
derive some formulas and finite sums involving the certain classes combinatorial
numbers such as the combinatorial numbers y6(m,n;λ, r), the combinatorial
numbers y1(m,n;λ), the Daehee numbers, and the Changhee numbers.

2020 MSC: 05A15, 05A19, 11B65, 33A70

Keywords: Combinatorial numbers, Generating function, Difference operator

Introduction
The finite difference operator is roughly determined by the mathematical expres-

sion
T (d, e) [G(y)] = G (y + d)−G (y + e).

This operator is used primarily in the finite difference approximation of the derivative
of a function, differential equations involving the numerical solution of boundary value
problems, numerical calculations of functions, and the construction of special numbers
including Stirling numbers.

When e = 1, the operator T (d, e) reduces to the ∆d operator. That is,

T (d, 1) [G(y)] = ∆d [G(y)] = G (y + d)−G (y).

(cf. [8, 20]).
The finite difference operator have been used and applied all most all branches of

pure and applied sciences. Especially, this operator can be used to finde numerical
evaluations and behaviour of the functions, mainly and polynomials. Special values
of these beheviour gives us special numbers. For instance, the second kind Stirling
numbers can be obtained by this way.

In this presentation, applying the operator

∆1 [G(y)] = ∆ [G(y)] = G (y + 1)−G (y).

to the combinatorial numbers y6(m,n;λ, r), which are defined below, we derive some
new identities and relations.

Successive differences can also be taken. For example

∆2G(x) = ∆[∆G(x)]

= ∆[G(x+ 1)−G(x)]

= G(x+ 2)− 2G(x+ 1) +G(x).
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We call ∆2 the second order difference operator or difference operator of order 2.
In general we define the nth order difference operator by

∆nG(x) = ∆[∆n−1G(x)] (1)

=

n∑
j=0

(
n

j

)
(−1)jG(x+ n− j)

(cf. [8], [20]).
The motivation of this work is to focus applications of the operator ∆ to the

following combinatorial numbers y6(m,n;λ, r), which were discovered the second au-
thor [14]:

Fy6
(t, n;λ, r) :=

1

n!
rFr−1

[
−n,−n, ...,−n

1, 1, ..., 1
; (−1)

r
λet
]

(2)

=

∞∑
m=0

y6(m,n;λ, r)
tm

m!
, (3)

where λ ∈ R (or C), n, r ∈ N = {1, 2, . . . }, m ∈ N ∪ {0} and rFr−1 denotes the
following generalized hypergeometric function:

pFq

[
α1, ..., αp
β1, ..., βq

; z

]
=

∞∑
m=0


p∏
j=1

(αj)m

q∏
j=1

(βj)m

 zm

m!
,

where (α)m denotes the Pochhammer symbol defined by

(α)m = α (α+ 1) . . . (α+m− 1)

with (α)0 = 1, such that the above series converges for all z if p < q + 1, and for
|z| < 1 if p = q + 1. For this series one can assumed that all parameters have real or
complex values, except for the βj , j = 1, 2, ..., q none of which is equal to zero or to a
negative integer (See, for details, [14, 19, 21]).

By using hypergeometric series techniques in (2), the function Fy6 (t, n;λ, r) can
also be written as follows:

Fy6
(t, n;λ, r) =

1

n!

n∑
j=0

(
n

j

)r
λjetj (4)

=

∞∑
m=0

y6(m,n;λ, p)
tm

m!

(cf. [14, p. 1329]).
The numbers

∂m

∂tm
{Fy6

(t, n;λ, r)} |t=0 = y6(m,n;λ, p) +

∞∑
v=m+1

y6(v, n;λ, p)
tv

v!
|t=0

From the above equation, we see that

y6(m,n;λ, p) =
∂m

∂tm
{Fy6

(t, n;λ, r)} |t=0

(cf. [14, p. 1329])
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Conspicuously, the combination of (3) and (4) implies that the numbers y6(m,n;λ, r)
can be expressed explicitly by the following finite sum:

y6(m,n;λ, p) =
1

n!

n∑
k=0

(
n

k

)p
kmλk, (5)

where λ ∈ R (or C), n, p ∈ N = {1, 2, . . . } and m ∈ N ∪ {0} (cf. [14, p. 1347]).
Recently, these numbers have been used by many researchers. Here noting that

the numbers y6(m,n;λ, r) is referred combinatorial Simsek numbers of the sixth kind
because of its index as in this study of Kucukoglu [7].

The most obvious relationship between the first kind and sixth kind combinatorial
Simsek numbers is as follows:

y6(m,n;λ, 1) = y1(m,n;λ)

(cf. [14, 13]).

Main results
In this section, we give some applications of the ∆m to the generating function

for the numbers y6(m,n;λ, r). Thus, we derive some formulas.
By applying (1) to (4), we get

∆m
t [Fy6

(t, n;λ, r)] =
1

n!

m∑
k=0

n∑
j=0

(−1)k
(
n

j

)r(
m

k

)
λje(t+m−k)j

Therefore, we get the following difference equation:

∆m
t [Fy6

(t, n;λ, r)] =

m∑
k=0

(−1)k
(
m

k

)
Fy6

(t+m− k, n;λ, r) . (6)

Similarly, we get

∆m
t [Fy6 (t, n;λ, r)] =

∞∑
v=0

y6(v, n;λ, p)

m∑
k=0

(−1)k
(
m

k

)
(t+m− k)v

v!
(7)

Combining (6) and (7) yields the following theorem:

Theorem 1. Let m ∈ N0. Then we have

∞∑
v=0

y6(v, n;λ, p)

m∑
k=0

(−1)k
(
m

k

)
(t+m− k)v

v!
=

m∑
k=0

(−1)k
(
m

k

)
Fy6

(t+m− k, n;λ, r) .

(8)

Substituting m = 1 into (8), we get

∞∑
v=0

y6(v, n;λ, p)
(t+ 1)v − tv

v!
= Fy6

(t+ 1, n;λ, r)− Fy6
(t, n;λ, r) .

On the other hand we have

∆d [y6(m,n;λ, p)] =
1

n!

n∑
k=0

(
n

k

)p
km

d∑
j=0

(
d

j

)
(−1)j(λ+ d− j)k. (9)
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Therefore

∆d [y6(m,n;λ, p)] =

d∑
j=0

(
d

j

)
(−1)jy6(m,n;λ+ d− j, p).

Putting λ = −v in (9), we obtain

∆d [y6(m,n;−v, p)] =
1

n!

n∑
k=0

(
n

k

)p
km

d∑
j=0

(
d

j

)
(−1)j(−j)k. (10)

Combining the above equation with following numbers, which were defined by the
second author [13]:

y1(m, k;λ) =
1

k!

k∑
j=0

(
k

j

)
jmλj ,

we arrive at the following theorem:

Theorem 2. Let m ∈ N0. Then we have

∆d [y6(m,n;−v, p)] =
d!

n!

n∑
k=0

(−1)k
(
n

k

)p
kmy1(k, d;−1). (11)

Substituting the Daehee numbers: (d+ 1)Dd = (−1)dd! (cf. [5]) into (11), we get the
following corollary:

Corollary 3. Let m ∈ N0. Then we have

∆d [y6(m,n;−v, p)] =
(d+ 1)Dd

n!

n∑
k=0

(−1)k+d

(
n

k

)p
kmy1(k, d;−1). (12)

Conclusion
We gave some properties of the difference operator. The purpose of this study is to

give applications of the difference operator to the certain classes combinatorial num-
bers involving higher order binomial coefficients, we found some formulas and finite
sums involving the certain classes combinatorial numbers such as the combinatorial
numbers y6(m,n;λ, r), the combinatorial numbers y1(m,n;λ), the Daehee numbers,
and the Changhee numbers.

Our future project will be to investigate other properties of this operator and its
applications to othe classes of special polynomials.
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On the pedal and contrapedal curves of
spacelike framed immersions
Engin Tulga ∗1 and Gülşah Aydın Şekerci 2

In this work, we obtain Frenet type formulae of spacelike framed immersions
in Minkowski 3-space and describe their pedal and contrapedal curves. We also
examine the necessary conditions for these curves to be framed base curves.

2020 MSC: 53A04, 57R45

Keywords: spacelike curve, framed curve, framed immersion, pedal curve, con-
trapedal curve.

Introduction
In differential geometry, curves formed by curves are basic concepts with numerous

applications in engineering and optics. Some of those are pedal curves and contrapedal
curves. The pedal (contrapedal) curve is the locus of orthogonal projections from a
given point to all of the tangent (normal) lines of a regular plane curve. There are
several important uses for pedal curves in astronomy. Moreover, pedal curves are used
in optics, notably in the construction of small camera lenses. Pedal and contrapedal
curves can be obtained for singular curves as well as regular curves. However, when
the curve has singularities, such as cusps, inflection points, etc., tangent lines are not
well defined at these points [5]. So, the Frenet frame is not used to examine the local
differential geometry of curves which have singularities. For this reason, S. Honda and
M. Takahashi have defined the framed curves in Euclidean space [3]. Therefore, the
singular curve in Euclidean 3-space is characterized using framed curves. Then, the
existence conditions of framed curves for smooth curves have been given [2]. In addi-
tion to Frenet curves, Legendre curves are also being promoted in this way. Studies
on this subject have been carried out for many different spaces. One of them has been
done by P. Li, D. Pei [4] and they have shown the definition of spacelike framed curves
in Minkowski 3-space. Moreover, they have defined the nullcone fronts of a spacelike
framed curve. In addition, the pedal and contrapedal curves of framed immersions in
Euclidean space are expressed in [5]. Authors provide the relationships between the
evolutes and involutes of framed immersions, as well as pedal and contrapedal curves.

The main motivation of our work is that we encounter singular curves rather than
regular curves in daily life. Therefore, solving problems on this subject is very im-
portant. Unlike previous studies, our aim is to investigate the pedal and contrapedal
curves of spacelike framed immersions in Minkowski 3-space. For this, we obtain the
Frenet type formulas for spacelike framed immersions by using the Frenet type formu-
las of framed curves. Then, we define pedal and contrapedal curves considering these
formulas. Moreover, we obtain the necessary conditions for pedal and contrapedal
curves of spacelike framed immersions to be framed base curves.
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Preliminaries
Let R3 be the 3-dimensional real vector space. For a = (a1, a2, a3),

b = (b1, b2, b3) ∈ R3, the pseudo scalar product of a and b is given by 〈a,b〉 =
−a1b1 + a2b2 + a3b3. Then, the vector space R3 associated with this pseudo scalar
product is called a 3-dimensional pseudo Euclidean space, or Minkowski 3-space and
it is shown with (R3, 〈, 〉). Also, for the sake of the shortness, R3

1 is written instead of
(R3, 〈, 〉).

The vector a ∈ R3
1 is called spacelike, lightlike or timelike if 〈a,a〉 > 0, 〈a,a〉 = 0 or

〈a,a〉 < 0, respectively and the norm of the vector a ∈ R3
1 is given by ‖a‖ =

√
|〈a,a〉|.

Moreover, the signature of a is denoted by ε such that
〈a,a〉
‖a‖2

= ε [1] .

We have the pseudo-spheres with centered origin in R3
1 which are given by

S2
1 = {a ∈ R3

1|〈a,a〉 = 1}, (1)

which is called pseudo 2-sphere,

H2
0 = {a ∈ R3

1|〈a,a〉 = −1}, (2)

which is called hyperbolic 2-space [4].
Let γ : I −→ R3

1 be a regular curve, which is parametrized by an open interval I.
For any t ∈ I, we say that the curve is spacelike, timelike, lightlike if 〈γ′(t),γ′(t)〉 > 0,
〈γ′(t),γ′(t)〉 < 0, 〈γ′(t),γ′(t)〉 = 0, respectively [4].

Accordingly, the following definition is given for a spacelike spatial curve with
singular points.

Definition 1. Let γ : I −→ R3
1 be a spacelike curve and a map (γ, ν1, ν2) be

(γ, ν1, ν2) : I −→ R3
1 ×∆ where

∆ = {(ν1, ν2) ∈ S2
1 ×H2

0 |〈ν1(t), ν2(t)〉 = 0} (3)

or
∆ = {(ν1, ν2) ∈ H2

0 × S2
1 |〈ν1(t), ν2(t)〉 = 0}. (4)

If 〈γ′(t), ν1(t)〉 = 0 and 〈γ′(t), ν2(t)〉 = 0 for all t ∈ I, then (γ, ν1, ν2) is called a
spacelike framed curve [4].

Definition 2. γ(t) is called the original curve of the spacelike framed curve [4].

Remark 2. For a spacelike curve, we know that there are three types of frame fields.
Only two are examined in this research.

Assume that µ(t) = ν1(t) ∧ ν2(t) which is a spacelike vector field. In addition
to, let α(t) be a smooth function such that γ

′
(t) = α(t)µ(t). Then the Frenet type

formulas for a spacelike framed curve are given as following:ν′1(t)

ν
′

2(t)

µ
′
(t)

 =

 0 −δl1(t) −l2(t)
−δl1(t) 0 l3(t)
δl2(t) δl3(t) 0

ν1(t)
ν2(t)
µ(t)


where 〈ν1(t), ν1(t)〉 = sign(ν1(t)) = δ and 〈ν2(t), ν2(t)〉 = sign(ν2(t)) = −δ. Also,
the map (α(t), l1(t), l2(t), l3(t)) is the curvature of the spacelike framed curve which
is given by

l1(t) = 〈ν
′

1(t), ν2(t)〉,

l2(t) = 〈µ
′
(t), ν1(t)〉,

l3(t) = 〈ν
′

2(t), µ(t)〉,

α(t) = 〈γ
′
(t), µ(t)〉.
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Main results
Let (γ, ν1, ν2) : I −→ R3

1 × ∆ be a spacelike framed curve. Firstly, we obtain a
spacelike framed immersion by rotating ν1(t) and ν2(t). For this, we use the plane
spanned by ν1(t) and ν2(t), which is the normal plane of γ. According to Lorentzian
rotation, we define[

n1(t)
n2(t)

]
=

1√
|l22(t)− l23(t)|

[
l2(t) l3(t)
l3(t) l2(t)

] [
ν1(t)
ν2(t)

]
where l22(t)− l23(t) 6= 0 for all t ∈ I. In that case, n1(t) and ν1(t) have the same causal
character. Therefore, n2(t) and ν2(t) have the same causal character. Moreover,
(γ, ν1, ν2) : I −→ R3

1 ×∆ is a spacelike framed immersion and n1(t)× n2(t) = µ(t).
The Frenet type formulas of the spacelike framed immersion (γ, n1, n2) are given

by n′1(t)

n
′

2(t)

µ
′
(t)

 =

 0 L(t) −M(t)
L(t) 0 0
δM(t) 0 0

n1(t)
n2(t)
µ(t)


The map (L,M, 0, α) : I → R4 is the curvature of (γ, n1, n2). The curvature functions
are determined as

L(t) =

[
−δl1(t) +

l2(t)l
′

3(t)− l′2(t)l3(t)

l22(t)− l23(t)

]

and
M(t) = ε

√
|l22(t)− l23(t)|.

While the osculating plane of γ at γ(t) is the plane spanned by µ(t) and n1(t), the
normal plane of γ at γ(t) is the plane spanned by n1(t) and n2(t).

Assume that (γ, n1, n2) : I → R3
1 ×∆ is a spacelike framed immersion and p ∈ R3

1

is a fixed point. When we take the orthogonal projection point of p on each osculating
plane of γ, we have a curve. Likewise, if we use the normal plane rather than the
osculator plane, we have another curve. Now let us give the definitions of these special
curves.

Definition 3. Assume that (γ, n1, n2) : I → R3
1×∆ is a spacelike framed immersion

and p ∈ R3
1 is a fixed point. Then, the pedal curve and the contrapedal curve are given

as the followings:
1) The pedal curve of the spacelike framed immersion (γ, n1, n2) associated with the
point p is

Peγ,p(t) = p+ δ〈
−−−→
γ(t)p, n2(t)〉n2(t)

where the map Peγ,p(t) is Peγ,p : I → R3
1 and p is called pedal point.

2) The contrapedal curve of the spacelike framed immersion (γ, n1, n2) associated with
the point p is

CPeγ,p(t) = p− 〈
−−−→
γ(t)p, µ(t)〉µ(t)

where the map CPeγ,p(t) is CPeγ,p : I → R3
1 and p is called contrapedal point.
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Theorem 4. Let (γ, n1, n2) be a spacelike framed immersion. Then, its pedal curve
has a chausal character as the following:
i) If f2

2 (t)− f2
1 (t) > 0 and n1 is spacelike (timelike), then the pedal curve is spacelike

(timelike),
ii) If f2

2 (t)− f2
1 (t) < 0 and n1 is spacelike (timelike), then the pedal curve is timelike

(spacelike),
where p ∈ R3

1 is a fixed point and f, f1, f2 : I → R are smooth functions such that

〈p− γ(t), n1(t)〉 = f(t)f1(t),

〈p− γ(t), n2(t)〉 = f(t)f2(t),

f2
2 (t)− f2

1 (t) 6= 0.

Proof. When we take the derivative of the pedal curve Peγ,p(t), we obtain as the
following:

Pe
′

γ,p(t) =− δ
〈
γ
′
(t), n2(t)

〉
n2(t) + δ

〈
p− γ(t), n

′

2(t)
〉
n2(t)

+ δ 〈p− γ(t), n2(t)〉n
′

2(t)

=− δ 〈α(t)µ(t), n2(t)〉n2(t) + δ 〈p− γ(t), L(t)n1(t)〉n2(t)

+ δ 〈p− γ(t), n2(t)〉L(t)n1(t)

=δL(t)f(t) [f2(t)n1(t) + f1(t)n2(t)]

Therefore, the causal character of the pedal curve is

〈Pe
′

γ,p(t), P e
′

γ,p(t)〉 = δL2(t)f2(t)(f2
2 (t)− f2

1 (t)).

Theorem 5. Let (γ, n1, n2) be a spacelike framed immersion, (L,M,O, α) be the
curvature and p ∈ R3

1 be a fixed point. If there exist the smooth functions f, f1, f2 :
I → R such that

〈p− γ(t), n1(t)〉 = f(t)f1(t), 〈p− γ(t), n2(t)〉 = f(t)f2(t), f2
2 (t)− f2

1 (t) 6= 0,

then the pedal curve Peγ,p is a framed base curve.

Proof. According to the proof of the previous theorem,

Pe
′

γ,p(t) = δL(t)f(t) [f2(t)n1(t) + f1(t)n2(t)] .

When γ is spacelike, the pedal curve can be timelike or spacelike. Accordingly, ν̂1

and ν̂2 can also be timelike or spacelike. Considering these causal characters, we get

ν̂1 = µ(t) , ν̂2 =
f1(t)n1(t) + f2(t)n2(t)√

|f2
2 (t)− f2

1 (t)|

or

ν̂1 =
f1(t)n1(t) + f2(t)n2(t)√

|f2
2 (t)− f2

1 (t)|
, ν̂2 = µ(t).

Then, (Peγ,p, ν̂1, ν̂2) : I → R3
1 ×∆ is a framed curve.
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Theorem 6. Let (γ, n1, n2) be a spacelike framed immersion. Then, its contrapedal
curve has a chausal character as the following:
i) If n1 is spacelike (timelike), then the contrapedal curve is spacelike,
ii) If g2

2(t) − g2
1(t) > 0 (g2

2(t) − g2
1(t) < 0) and n1 is timelike, then the contrapedal

curve is spacelike (timelike),
where p ∈ R3

1 is a fixed point and (g, g1, g2) : I → R are smooth functions such that

α(t)− δM(t)〈p− γ(t), n1(t)〉 = g(t)g2(t),

−δM(t)〈p− γ(t), µ(t)〉 = g(t)g1(t),

g2
2(t) + δg2

1(t) 6= 0.

Proof. When we take the derivative of the contrapedal curve CPeγ,p(t), we obtain as
the following:

CPe
′

γ,p(t) =−
〈
−γ
′
(t), µ(t)

〉
µ(t))−

〈
p− γ(t), µ

′
(t)
〉
µ(t)

− 〈p− γ(t), µ(t)〉µ
′
(t)

= 〈α(t)µ(t), µ(t)〉µ(t)− 〈p− γ(t), δM(t)n1(t)〉µ(t)

− 〈p− γ(t), µ(t)〉 δM(t)n1(t)

= [α(t)− δµ(t) 〈p− γ(t), n1(t)〉]µ(t)− δM(t) 〈p− γ(t), µ(t)〉n1(t)

Therefore, the causal character of the contrapedal curve is

〈CPe
′

γ,p(t), CPe
′

γ,p(t)〉 = g2(t)
[
g2

2(t) + δg2
1(t)

]
.

Theorem 7. Let (γ, n1, n2) be a spacelike framed immersion, (L,M,O, α) be the
curvature and p ∈ R3

1 be a fixed point. If there exist the smooth functions g, g1, g2 :
I → R such that α(t) − δM(t)〈p − γ(t), n1(t)〉 = g(t)g2(t), −δM(t)〈p − γ(t), µ(t)〉 =
g(t)g1(t), g2

2(t)+δg2
1(t) 6= 0, then the contrapedal curve CPeγ,p is a framed base curve.

Proof. According to the proof of the previous theorem,

CPe
′

γ,p(t) = g(t) [g2(t)µ(t) + g1(t)n1(t)] .

When γ is spacelike, the pedal curve can be timelike or spacelike. Accordingly, ν̂1

and ν̂2 can also be timelike or spacelike. Considering these causal characters, we get

ν1 = n2(t) , ν2 =
−δg1(t)µ(t) + g2(t)n1(t)√

|g2
2(t) + δg2

1(t)|
or

ν1 =
−δg1(t)µ(t) + g2(t)n1(t)√

|g2
2(t) + δg2

1(t)|
, ν2 = n2(t).

Then, (CPeγ,p, ν1, ν2) : I → R3
1 ×∆ is a framed curve.

Conclusion
The pedal and contrapedal curves of spacelike framed immersions in Minkowski

3-space have been examined in this work. We investigate Frenet type formulas for
spacelike framed immersions and using these formulas, we establish the pedal curves
and the contrapedal curves. Additionally, we have the prerequisites that these curves
to be framed base curves. Furthermore, we demonstrate that a pedal curve or a
contrapedal curve of spacelike framed immersion does not always require a spacelike
or a timelike.
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Important points of the cluster analysis
method in multivariate statistical analysis

Fusun Yalcin

Cluster analysis is a multivariate statistical method used in almost all branches
of science. This article gives a brief description of the highlights of cluster anal-
ysis. An example of a cluster analysis dendogram is also given.
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Introduction
Cluster analysis is a multivariate statistical technique widely used in social sci-

ences, natural sciences, applied sciences and engineering. First, it is important to
understand what clustering is. Clustering is defined as the grouping of a set of ob-
jects according to some internal characteristics. It is a grouping in which objects
with the same characteristics are grouped together. The researcher can specify these
characteristics. Although clustering analysis is thought of as just an algorithm, it is
actually like a series of tasks under the algorithm. In other words, clustering analysis
can be performed with different algorithms to determine what a cluster consists of in
general and how to find these clusters in the most efficient way. The main purpose of
cluster analysis is to discover the natural grouping of units from complex structured
data sets and to classify the units into clusters according to whether they are homo-
geneous or not (cf. [1]). Cluster analysis was first introduced in anthropology in 1932
by Driver and Kroeber (cf. [3]) and was later used in psychology by Joseph Zubin
in 1938 (cf. [11]) and Robert Tryon in 1939 (cf. [8]). Cattell used the trait theory
classification in personality psychology in 1943 (cf. [9]).

Material and method
When applying cluster analysis, the first step should be to obtain observations

for p variables from n units taken from the population for which there is no precise
information about their natural groupings. In the second stage, the distances between
the units or variables should be determined using an appropriate similarity measure
that will help us to determine the similarities or differences between the units or
variables (cf. [1, 7]). Depending on whether the variables are discrete or continuous,
nominal, ordinal, interval or proportional, it is necessary to decide which distance or
similarity measure to use.

With the appropriate clustering algorithm determined in the third step, the units
or variables should be divided into an appropriate number of clusters according to
similarity and difference matrices. While clustering methods divide units or variables
into appropriate groups, they are divided into two basic groups according to the ap-
proaches they follow in determining the groups. These methods can be divided into
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two groups: Hierarchical Clustering Analysis Methods and Non-Hierarchical Clus-
tering Analysis Methods. Finally, the clusters obtained are interpreted according to
their structures and analysis is carried out (cf. [1, 7]). Hierarchical clustering methods
are methods that aim to combine units with each other at certain levels, taking into
account their similarities.

Non-hierarchical clustering is a method that aims to group units into clusters
that are homogeneous within themselves and heterogeneous between themselves. In
hierarchical clustering, both units and variables form clusters with different levels of
similarity to each other, whereas in non-hierarchical methods, the aim is to group the
units into appropriate clusters and to divide n units into k clusters (cf. [1, 7]). There
are several types of distance formula used in cluster analysis, which are described in
Everitt’s book. If you are interested, you can use this book to study them in detail
(cf. [4]).

Example 1. In the study article we will give as an example, in the study of heavy
metals in Akkaya Lake Reservoir Soil, a dendogram was created using Hierarchical
Clustering Analysis, considering the chemical analysis results of samples taken from
31 different stations and the Euclidean distance coefficient (cf. [10]). Sites showing
similar behaviour to each other formed three distinct groups. The first group: Site 5 is
externally connected to group 10, 30, 24, 8, 28, 11, 25, 7, 21 and 20 (Figure 1) Second
group: Locations 22 and 27. Third group: consists of 4 sub-groups within itself. First
subgroup: 3, 14, 19 and 31; second subgroup: 1, 6, 4 and 13; third sub-group: 15, 17
and 29; fourth subgroup: 9, 16, 2, 12, 26, 23 and 18. Sites with similar characteristics
may contain similar proportions of elements between them (Figure 1). Cluster analysis
can help us to distinguish between elements according to their similarities, but it can
also help us to get an idea of the distribution of the cluster formed by each element.
More detailed examples can be found in the articles (cf. [2, 4, 5, 6]).

Figure 1: Dendogram showing the chemical analysis of the samples taken to study
heavy metals in the Akkaya Reservoir Soil
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Conclusion
In multivariate statistics, cluster analysis is an important tool for grouping vari-

ables or objects by the distances between them. In this study a brief information
about cluster analysis is given. A sample suitable for the purpose of the study has
been taken. The grouping of elements shown in the example is widely used in geolog-
ical science.
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Numbers of the digital age: New media and
statistical approaches
Fatma Yardibi ∗1 and Sibel Hoştut 2

The spread and development of digital technologies has shown an unusually
rapid and continuous development. New media, which is at the center of this
development, have become an integral part of daily life. We discussed statistics’
critical role in understanding new media phenomena in the digital age. In this
article, we examine how new media becomes a data source in various areas, from
social media platforms to interactive websites and mobile applications to online
marketing and advertising, and how these data are interpreted through statis-
tical analysis. In particular, it discusses how statistics are used in collecting,
processing, and interpreting new media data and the importance of data analy-
sis. The interaction between new media and statistics is important not only for
data scientists and marketers but also for other segments of society. The study
also serves as a guide for anyone who wants to understand the developments
in new media and the digital facts behind these developments in a data-driven
world.
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Introduction
New media emerges as one of the most important concepts of the 21st century.

In 2022, 96% of young people in the EU used the internet daily; this rate was 84%
in the entire population [5]. New media is defined as interactive, versatile, virtuality
and networked mass media provided by digital technology such as the Internet [8, 20].
The concept covers all content accessed via computers, smartphones and tablets [4].
While new media emphasizes the dynamic and user interaction of communication,
traditional media such as newspapers, radio and television emphasize one-way com-
munication and fixed content distribution. But as new technology is improved and
widely accepted, what is considered “new” continues to change [4]. While VHS/VCR
players, DVDs, CDs and mp3s were the most popular means of watching movies and
listening to music in the past, today they are replaced by streaming services such
as Netflix, Amazon Prime Video, Disney +, Max, Paramount +, and Spotify [15].
The rise of the world wide web, and especially the invention of powerful search en-
gines, and social media platforms has led to explosive growth in social network size
and connectivity; whereas in human history, social networks were small and local,
organizations changed slowly, and power was concentrated in a small subset of the
population [6].

New media are generally conceptualized as forms of media that rely heavily on dig-
ital technologies to communicate with audiences. Flew’s research has focused on the
transformative impact of digital age technologies on traditional media forms and the
emergence of new media characterized by their digital nature [7]. The changing media
landscape encompasses a variety of platforms, including blogs, augmented and virtual
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reality, computer games, mobile apps, video sharing programs, podcasts, streaming
services, social media, chat platforms, vlogs, emails, forums, and websites [19].

Although the new media concept seems new, its emergence in academic literature
dates back to the 1980s [17]. This seminal work offers a comprehensive analysis of
new media, highlighting its dynamic nature and the transformation of communication
methods over time. This evolution in definition reflects a shift from early understand-
ings of new media as technology-based, interactive networks to the contemporary
view. This narrative can be framed within the broader context of the development
of digital communications, acknowledging the seminal works of the 1980s that form
the basis for today’s nuanced definition [26]. This approach places the concept within
a historical and evolving scientific discourse and shows how technological advances
shape and redefine our understanding of new media. Therefore, these studies are
important for early recognition of the impact of digital technology on communication
practices.

The relationship between new media and statistics is crucial to understanding
modern communication dynamics. As new media platforms increase, so does the
production of big data sets that require advanced statistical approaches to analyze user
behavior and content trends. This relationship underscores the increasing importance
of statistical methods in unraveling complex patterns resulting from digital media
use. This data includes insights into user behavior, popular topics, market trends,
etc., and can be used to identify patterns. Statistical methods and data analysis
techniques are one of the tools that will help identify specific patterns and trends
in these data sets. It is quite important to develop and use mathematical functions
and models to model complex relationships and patterns in data. For example, user
interactions and web traffic data can be used to understand the factors that influence
the popularity of a particular website. By tracking traffic sources, measuring user
engagement and monitoring conversions, the website can be optimized into a powerful
tool to maximize leads and increase revenue [9]. Web analytics relates to the act
of tracking, analyzing and generating reports on the use of a website, such as web
pages, images or videos [21]. Recently, various machine learning approaches have been
frequently used to overcome regression issues. Regression formulates relationships
mathematically so that other values may be predicted using the equation [21].

This study focuses on the statistical analysis of large data sets obtained from
new media sources, especially data collected through social media, web analytics, and
other digital platforms. It aims to understand and apply these analyses effectively.
Additionally, the study will detail how new media data can be evaluated, particularly
in areas such as pattern recognition, trend analysis, and building predictive models.
It will also explore how these techniques can be integrated with the discovery and
analysis of mathematical functions.

Preliminaries
In the study, general definitions will be made of the statistical analysis of big data

sets obtained from new media sources, especially data collected through social me-
dia, web analytics and other digital platforms. Strong statistical methods, popularly
termed data mining or machine learning, enable the computer to detect complex pat-
terns in data, which makes the application of statistical methods a fundamental step
in generating knowledge with big data [13]. The sources and structure of new media
data are presented in Figure 1. By analyzing data from social media, web analytics,
digital advertising, multimedia content, mobile application, e-commerce, and content
sharing in-depth information can be provided on user behavior, market trends, social
trends, and many more. Complex new media data is often processed, analyzed and
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interpreted using big data analysis techniques and various statistical methods.
Statistical analysis and Machine Learning Methods, Cluster Analysis, Natural

Language Processing (NLP), text mining and language modeling techniques are ap-
plied along with analysis such as Sentiment Analysis, Trend Analysis, Network Anal-
ysis, Topic Modeling. Results are presented with visualizations and interpretations.
Each step can be adapted according to the purpose and specific needs of the analysis.
Since new media data analysis is an ever-changing field, it is necessary to keep up
with current tools and methods. This study will focus on forecasting methods and
mathematical modeling often used to extract meaningful information from big data
sets and predict future trends or behaviors. Each of these analyses is the subject of
extensive research, and it is not possible to examine them all in a single study. In
this study, where we focus on a specific place by getting a little more detailed than
general, we will touch on frequently used forecasting methods to extract meaningful
information from large data sets, predict future trends or behaviors, and focus on the
Q-Learning algorithm.

Figure 1: A selection of new media data sources

Some standard forecasting methods used to extract meaningful information that
predict future trends or behavior are given in Figure 2. Integrating Machine Learning
and Deep Learning with statistical analysis methods has been a significant area of
interest in the research literature over the last decade. This integration is closely
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related to rapid developments in data science and the analysis of big data sets. Data
mining has become an essential part of analysis as the speed and capacity of data
generation increases [10].

Figure 2: A selection of forecasting methods for new media data

Social media data contains a wide range of information that can be used as a
predictive tool [18]. Predictive analytics uses various statistical or data mining meth-
ods to make predictions about future outcomes and performance [12, 11]. Predictive
power refers to the ability to accurately predict new observations. Predictive power
is significant, and statistical models and algorithms for best prediction continue to be
developed.
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Main result
Statistics is a powerful tool that delves into the depths of new media data, illumi-

nating various areas, from user behaviors to market trends. Algorithms also play an
important role in the analysis of logical and simple mathematical operations. In this
section we will focus on the applications and possible outcomes of the Q-learning ap-
proach to new media, which has been discussed with its pros and cons and is thought
to take developments in artificial intelligence a step further. Q-learning [24] is one
of the most popular reinforcement learning algorithms of recent times, although its
theoretical development dates to the 1980s. Q-learning is an approach to Machine
Learning that allows a model to learn and improve over time by taking the right
actions and making the right decisions [3]. Q-Learning is an algorithm in the rein-
forcement learning category and is generally used to learn optimal actions to achieve
a specific goal. Due to its potential applications in various fields, including new me-
dia, Q-learning has received considerable attention in recent years [1]. It was first
introduced by Bellman (1957) [2] and later adapted to complex environments with
unknown transition dynamics by approximate dynamic programming with function
approximators [3]. Secondly, Watkins and Dayan (1992) introduced the original Q-
learning algorithm [25]. This is an incremental (stochastic approximation) method
for estimating the Q-function in a Markov decision process [16]. Previously limited
to the computer science and control theory literature, these methods have provided
a bridge from prediction methods in statistics to the application of Q-learning [14].

Mathematics: the Q-learning algorithm
To solve sequential decision problems, predictions for the optimal value of each

action can be learned; this value is defined as the expected sum of future rewards
when taking that action and following the optimal policy thereafter [23].

The Q-function uses the Bellman equation and takes two inputs: state (s) and
action (a).

Q π (st, at)︸ ︷︷ ︸
Q-value for the state given a particular

= E

 Rt+1 + γRt+2 + γ2Rt+3+︸ ︷︷ ︸
Expected discounted cumulative reward

· · · |st, at︸ ︷︷ ︸
Given the state and action

 . (1)

The discount factor γ, which ranges from 0 to 1, balances the significance of
immediate and future rewards. An optimal policy is obtained by selecting the action
with the highest value in each state. A policy π defines the conditional probability
distribution of choosing different actions depending on each state s. The reward
sequence distribution can be determined once a stationary policy has been chosen.
The evaluation of policy π can be achieved through an action-value function. This
function is defined under π as the expected cumulative discounted reward when taking
an action from state s and following the π policy. The optimal value forQ isQ∗(s, a) =
(max

π
)Qπ (s, a). Banach’s fixed-point theorem can obtain the uniqueness and existence

of the fixed-point solution of Bellman optimality equations.

Q∗(s, a) = R (s, a) + γ

∫
s′
T (s′ | s, a) max

a′
Q∗(s

′, a′). (2)

When interacting with the environment at time t, the reinforcement learning agent
observes information about the current state s and chooses an action a based on a
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policy. It then receives a reward r from the environment based on the action taken
and transitions to a new state s′. Q-learning is a model-independent approach that
updates the prediction of Q-values based on experience instances at each time step
using the following equation.

Q(s, a)← Q(s, a) + a
(
r + γmax

a′
Q∗(s

′, a′)−Q(s, a)
)
. (3)

Here, α represents the learning rate, and Q(s, a) denotes the current estimation. Q-
learning, a form of temporal difference learning, can be used to learn estimates of
optimal action values [22]. The standard Q-learning update, after taking the At
action in the St state and observing the Rt+1 reward and the St+1 outcome state
immediately afterwards, is done for the parameters as follows:

θt+1 = θt + α
(
Y Qt −Q (St, At; θt)

)
∇θtQ (St, At; θt) (4)

The scalar step size is represented by α and the target Y Qt is defined as:

Y Qt = Rt+1 + γmax
a
Q (St+1, At; θt) . (5)

This update is similar to stochastic gradient descent which updates the current value
Q (St, At; θt) towards the target value Y Qt .

The algorithm selects an action for the current state, receives a reward, and up-
dates the Q-value at each iteration. This process continues until the state space is
adequately explored or another stopping criterion is reached.

There are studies showing that Q-learning has the potential to improve decision-
making processes and improve user experience in new media [27]. Possible areas of
use of the Q-learning approach in new media studies in the future can be listed as
follows. Q-learning can be used to learn what content to share to maximize user
interaction on a social media platform. The algorithm can be used for User Interac-
tion Optimization to recommend the best content by learning the effects of different
content types on user engagement. By analyzing user behavior and preferences, Q-
learning can help new media platforms make data-driven decisions that improve user
engagement and satisfaction. The algorithm can be effective in making personalized
content recommendations based on the user’s previous interactions and preferences to
recommend content that users will be interested in. The algorithm can learn which
strategies drive the highest conversion rate or engagement. Q-learning can be used to
predict users’ future behavior. This could be, for example, predicting the likelihood
that a user will express a positive or negative sentiment about a particular topic or
product.

Advantages: Because it is a model-free approach, Q-learning can be effective in
complex state spaces without needing model knowledge.

Challenges: Estimating and storing Q-values can be difficult in large state and/or
action spaces.

Conclusion
This study highlights the importance of predictive models designed to predict

new/future observations or scenarios, as well as methods and algorithms to evaluate
the predictive power of the model, in addition to transforming new media data into
high-quality data suitable for statistical analysis. New media, mainly social media
analysis, is about more than understanding metrics or consumer sentiment - it is about
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navigating the intricacies of human behavior online. The nature of fields means that
trends and user behavior can change instantly. This rapid volatility is reminiscent
of the stock market; both require agile strategies to capitalize on emerging patterns.
But while stock trading is mainly about analyzing numbers, social media is about
dissecting emotions, interests, and interactions. It’s like deciphering the digital DNA
of society at large. In today’s rapidly changing technological world, science will be
relatively slower to keep up with this change. As in previous studies, it does not seem
possible to produce results that do not change for many years in many areas. We
believe that branches of science, especially those dealing with technology-based and
highly interactive tools such as new media, will continue with studies that will trigger
or develop the next study. Although the research findings in these fields rapidly
become outdated, they will trigger other studies and pave the way for new studies
and developments. Therefore, the speed of science production will also increase. This
rapid change in current issues over time will affect many fields of science and accelerate
multidisciplinary studies. As in this study, big data content produced as a result of
the transformation of traditional into new media-based communication tools, has been
integrated with statistical and mathematical methods.
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Some results for poly-Cauchy numbers and
polynomials

Ghania Guettai ∗1, Laissaoui Difallah 2, Mohamed Amine Boutiche 3

and Mourad Rahmani 4

This research introduces some properties of a new class for the generalized
poly-Cauchy numbers and polynomials. We present various recurrence relations,
explicit formulae, and generating functions for these numbers and polynomials.
Additionally, we discuss the corresponding generalized m-poly-Bernoulli num-
bers and polynomials related to the generalized m-poly-Cauchy numbers and
polynomials.
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Associated polynomials arising from
Laguerre transform

Ghania Guettai ∗1, Laissaoui Difallah 2 and Mourad Rahmani 3

In this work, we define and study a new class of polynomials known as
associated polynomials, which exhibit properties closely resembling those of as-
sociated Laguerre polynomials. Initially, we extend the Laguerre transform to
two variables. As a practical application, we define and investigate a new class
of polynomials called two-variable associated Fibonacci polynomials.
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Berezin radius inequalities with application
of the contraction operator

Hamdullah Başaran

This study utilizes the contraction operator K to prove a few inequalities.
Furthermore, a few inequality utilizing the arithmetic mean-geometric mean
inequality (also known as AM-GM inequality) is given. The relationship be-
tween the spectral radius and the Berezin number inequalities of with using the
contraction operator K is presented.
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Introduction
Let B (H) denote the C∗-algebra of all bounded linear operators defined on a complex
Hilbert space (H, 〈., .〉). In the case when dim (H) = n, we identify B (H) with the
matrix algebra Mn of all n × n matrices having entries the complex field. Through-
out the work, we examine on reproducing kernel Hilbert space (RKHS), which are
complete inner product spaces made up of complex-valued functions defined on a
non-empty set Ω with bounded point evaluation. If 〈Mx, x〉 > 0 for all x ∈ H, then
an operator M ∈ B (H) is called positive, and then we write M > 0. Also, the ab-
solute value of positive operator is denoted by |M | = (M∗M)

1
2 . Let Ω be a subset

of a topological space X such that boundary ∂Ω is nonempty. Let H = H(Ω) be
an infinite-dimensional Hilbert space of functions defined on Ω. We say that H is a
reproducing kernel Hilbert space (briefly, RKHS) if the following two conditions are
satisfied:

(i) for any λ ∈ Ω, the functionals f → f(λ) are continuous on H;

(ii) for any λ ∈ Ω, there exists fλ ∈ H such that fλ (λ).

According to the classical Riesz representation theorem, the assumption (i) implies
that for any λ ∈ Ω there exists kλ ∈ H such that

f(λ) = 〈f, kλ〉 , f ∈ H.

The function kλ is called the reproducing kernel of H at point λ. Note that by
(ii), we surely have kλ 6= 0 and we denote k̂λ as the normalized reproducing kernel,
that is k̂λ = kλ

‖kλ‖ .
The Berezin transform associates smooth functions with operators on Hilbert

spaces of analytic functions.

Definition 1. Let H be a RKHS on a set Ω and let M be a bounded linear operator
on H.
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(i) For λ ∈ Ω, the Berezin transform of M at λ (or Berezin symbol of M) is

M̃ (λ) :=
〈
Mk̂λ, k̂λ

〉
H
.

(ii) The Berezin range of M (or Berezin set of M) is

Ber(M) := Range(M̃) =
{
M̃(λ) : λ ∈ Ω

}
.

(iii) The Berezin radius of M (or Berezin number of M) is

ber(M) := sup
λ∈Ω

∣∣∣M̃(λ)
∣∣∣

(for more facts abouts reproducing kernel Hilbert spaces and Berezin symbol, see,
Aronzajn [3] and Berezin [11]).

The Berezin transform M̃ is a bounded real-analytic function on Ω for each
bounded operator M on H. The Berezin transform M̃ frequently reflects the char-
acteristics of the operator M . Since F. Berezin first proposed the Berezin transform
in [11], it has become an essential tool in operator theory due to the fact that the
Berezin transforms of many significant operators include information about their fun-
damental characteristics. It is said that Karaev initially explicitly introduced the
Berezin set and Berezin number in [18], also denoted as Ber(M) and ber(M), respec-
tively.

In a RKHS, the Berezin range of an operatorM is a subset of the numerical range
of T . Hence ber(M) ≤ w(M). An operator’s numeric range has a number of intriguing
characteristics. For instance, it is common knowledge that an operator’s numerical
range’s closure contains the operator’s spectrum. We refer to [1, 2, 12, 20, 21] for the
fundamental attributes of the numerical radius.

For example, is it true, or under which additional conditions the following are
true:

(i) ber (M) ≥ 1
2 ‖M‖ ;

(ii)
ber (Mn) ≤ ber (M)

n (1)

for any integer n ≥ 1; more generally, if M is not nilpotent, then

C1ber (M)
n ≤ ber (Mn) ≤ C2ber (M)

n

for some constants C1, C2 > 0;

(iii) ber (MN) ≤ ber (M) ber(N), where M,N ∈ B(H).

If M = cI with c 6= 0, then obviously ber (M) = |c| > |c|
2

=
‖M‖

2
. However, it is

known that in general the above inequality (i) is not satisfied (see Karaev [19]).
It is well-known that

1

2
‖M‖ ≤ w (M) ≤ ‖M‖ (2)

and
ber (M) ≤ w (M) ≤ ‖M‖ (3)
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for any M ∈ B(H). Additionally, Karaev introduced additional numerical properties
of operators on the RKHS in [18], including Berezin range and Berezin radius. See
[9, 13, 14, 15, 17, 22] for the fundamental characteristics and information on these
novel concepts.

In 2018, Bakherad, has showed Berezin radius inequalities of block matrix of the

form
[

0 X
Y 0

]
(see, [4, 5, 7]). In 2022, Huban et al. [16] have proven the following

results:
ber (M) ≤ 1

2
‖|M |+ |M∗|‖ber (4)

and Başaran et al. [10] have showed the following inequality:

ber2 (M) ≤ 1

2

∥∥∥|M |2 + |M∗|2
∥∥∥

ber
.

As one can see in [1, 6, 8], where operator norm and numerical radius inequal-
ities were researched and implemented, operator matrices and their properties and
inequalities have attracted a lot of attention in the literature. Inequalities for the
Berezin number of operator matrices have just lately been introduced in [4, 5].

The direct sum of two copies of H is defined by H2 = H⊕H. If P,R, S, T ∈

B (H), then the operator matrix M =

[
P R
S T

]
can be considered as on operator in

B (H⊕H), which denoted by My =

[
P R
S T

] [
x1

x2

]
=

[
Px1 +Rx2

Sx1 + Tx2

]
for every vector

x =

[
x1

x2

]
∈ H ⊕H.

This study utilizes the contraction operator K to prove a few inequalities. Fur-
thermore, a few inequality utilizing the arithmetic mean-geometric mean inequality
(also known as AM-GM inequality) is given. The relationship between the spectral
radius and the Berezin number inequalities of with using the contraction operator K
is presented.

Main results
Corollary 2. Let M ∈ B (H (Υ1)⊕H (Υ2)) and let f and g be non-negative functions
on [0,∞) which are continouns with f (t) g (t) = t for all t ∈ [0,∞). Then there is a
contraction K ∈ B (H (Υ1)⊕H (Υ2)) such that

ber (M) = ber (M∗) ≤ 1

2

∥∥g (|M∗|)K∗Kg (|M∗|) + f2 (|M |)
∥∥

ber
.

In particular, for any 0 ≤ υ ≤ 1

ber (M) = ber (M∗) ≤ 1

2

∥∥∥|M∗|1−υK∗K |M∗|1−υ + |M |2υ
∥∥∥

ber
.

Corollary 3. Let T ∈ B (H (Υ1)⊕H (Υ2)) and let f and g be non-negative functions
on [0,∞) which are continouns with f (t) g (t) = t for all t ∈ [0,∞). Then there is a
contraction K ∈ B (H (Υ1)⊕H (Υ2)) such that

ber2 (T ) ≤ r
(
f2 (|T |)K∗g2 (|T ∗|)K

)
,

where r (.) is the spectral radius, then

(i) ber2 (T ) = ber2 (g (|T ∗|)Kf (|T |)) ,
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(ii) ber2 (g (|T ∗|)Kf (|T |)) ≤ r
(
f2 (|T |)K∗g2 (|T ∗|)K

)
.

In particular, for any 0 ≤ υ ≤ 1

(i) ber2 (T ) = ber2
(
|T ∗|1−υK |T |υ

)
,

(ii) ber2
(
|T ∗|1−υK |T |υ

)
≤ r

(
|T |2υK∗ |T ∗|2(1−υ)

K
)
.

Conclusion
In this study, inequalities were obtained using the contraction operator K. Also,

inequalities are shown using the arithmetic mean-geometric mean inequality (also
known as the AM-GM inequality). The relationship between spectral radius and
Berezin number inequalities was found using the contraction operator K. In the future,
it is aimed to prove two-operator versions of these inequalities.
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A study on dimorphic properties of Bernoulli
random variable

Hyunseok Lee

In this talk, we study a dimorphic property associated with two different
sums of identically independent Bernoulli random variables having two different
families of probability mass functions. There are various ways of studying special
numbers and polynomials, to mention a few, generating functions, combinato-
rial methods, probability theory, p-adic analysis, umbral calculus, differential
equations, special functions and analytic number theory. In recent years, we
have had lively interests in the study of various degenerate versions of special
numbers and polynomials with those diverse tools. As a fruit of such explo-
rations, we came up with, for example, the degenerate Stirling numbers which
are degenerate versions of the ordinary Stirling numbers and appear in many
different contexts.
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Keywords: Bernoulli random variable, Dimorphic properties, Degenerate Stir-
ling numbers of the second kind, Stirling numbers of the first kind
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New explicit formulas of the degenerate two
variables Fubini polynomials

Hye Kyung Kim

In this paper, we explore some explicit formulas for the higher-order degen-
erate two variables Fubini polynomials and numbers in terms of the degener-
ate Stirling numbers of the second kind, the degenerate r-Stirling numbers and
polynomials of the second kind, and the generalized degenerate falling factori-
als, which is different from the previous works. In addition, we introduce a new
type degenerate poly-Fubini polynomials of two variables and investigate some
interesting identities for them.
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A note on generalized Bernoulli polynomials
of the second kind

Han Young Kim ∗1, Lee Chae Jang 2 and Jongkyum Kwon 3

Recently, generalized Bernoulli polynomials and Bernoulli polynomials of
the second kind are introduced by Kim-Kim. In this paper, we consider gen-
eralized Bernoulli polynomials of the second kind. The aim of this paper is to
derive, for those polynomials, some properties, recurrence relations, and explicit
expressions. Generalized Bernoulli polynomials of the second kind in connection
with the Stirling number of the first kind, Stirling number of the second kind,
the Daehee numbers and the Harmonic numbers.

2020 MSC: 11B68, 11B75, 11B73

Keywords: Generalized degenerate type 2 Euler polynomials, The generalized
degenerate type 2 Euler-Genocchi polynomials of order α, The degenerate Stirling
numbers of the second kind

Introduction
As is well known, the Bernoulli polynomials are defined by the generating function

to be

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (see [1, 3]) (1)

When x = 0, Bn = Bn(0) are called the Bernoulli number.
For r ∈ N, the Bernoulli polynomials of order r are defined by the generating

function to be (
t

et − 1

)r
ext =

(
t

et − 1

)
× · · · ×

(
t

et − 1

)
︸ ︷︷ ︸

r−times

ext

=

∞∑
n=0

B(r)
n (x)

tn

n!
, (see [3, 6, 7])

(2)

In particular, if r = 1, Bn(x) = Bn(1) are the ordinary Bernoulli polynomials. When
x = 0, B(r)

n = B
(r)
n (0) are called the Bernoulli numbers of order r.

As is well known, the Bernoulli polynomials of the second kind (or the Cauchy
polynomials) are given by the generating function to be

t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n!
, (see [2, 3, 4, 7]) (3)

When x = 0, bn = bn(0) are called the Bernoulli numbers of the second kind.
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From (2) and (3), we easily see that bn = B
(n)
n (1) (n ≥ 1). For a nonnegative

integer n the stirling number of the first kind are defined by

(x)n =

n∑
l=0

S1(n, l)xl, (see [1, 3, 10, 11]). (4)

Where (x)0 = x, (x)n = x(x+1) . . . (x−n+1), (n ≥ 1). By the direct computation
of (4) we derive the following

1

n!
(log(1 + t))

n
=

∞∑
k=n

S1(k, n)
tk

k!
, (see [4, 5, 16, 17]). (5)

For a given nonnegative integer n, the Stirling number of the second kind are defined
by

xn =

n∑
l=0

S2(n, l)(x)l, (see [3, 10, 13]). (6)

By (6), we obtain

(et − 1)n = n!

∞∑
l=n

S2(l, n) =
tl

l!
, (see [12, 13]). (7)

As is known, the Daehee polynomials are defined by the generating function to be(
log(1 + t)

t

)
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
, (see [2, 4, 8, 9, 10]). (8)

When x = 0, Dn = Dn(0) are called the Daehee numbers.
It is well known that the harmonic numbers are defined by

H0 = 0, Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
(n ≥ 1), (see [5]). (9)

From (9), we can derive the generating function of harmonic numbers given by

− 1

1− t
log(1− t) =

∞∑
n=1

Hnt
n (see [13, 14]). (10)

The aim of this paper is to study several relations among those four kind of numbers.
We develop methods for generalized Bernoulli polynomials of the second kind, we
represent the generalized Bernoulli numbers in terms of the Stirling number of the first
kind, the Stirling number of the second kind, the Daehee numbers and the Harmonic
numbers. We deduce a recurrence relation for generalized Bernoulli polynomials.

The generalized Bernoulli polynomials of the second
kind

For r ∈ N, the generalized Bernoulli polynomials of the second kind are defined
by the generating function to be

tr

log(1 + t)
(1 + t)x =

∞∑
n=r−1

c(r)n (x)
tn

n!
. (11)
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When x = 0, c(r)n = c
(r)
n (0) are called the generalized Bernoulli numbers of the

second kind. Note that c(r)0 (x) = c
(r)
1 (x) = c

(r)
2 (x) = · · · = c

(r)
r−2(x) = 0. When r = 1,

we get that c(1)
n (x) = cn(x) for n = 0, 1, 2 . . . .

By (11), we observe that
∞∑

n=r−1

c(r)n (x)
tn

n!
=

tr

log(1 + t)
(1 + t)x = tr−1 × t

log(1 + t)
(1 + t)x

= tr−1
∞∑
n=0

cn(x)
tn

n!
=

∞∑
n=0

cn(x)
tn+r−1

n!

=

∞∑
n=r−1

cn−r+1(x)
n!

(n− r + 1)!

tn

n!

=

∞∑
n=r−1

(r − 1)!

(
n

r − 1

)
cn−r+1(x)

tn

n!
. (12)

Therefore, by comparing the coefficients on both sides of (12), we obtain the following
theorem.

Theorem 1. For n ∈ N, we have

c(r)n =

{
0, if n < r − 1

(r − 1)!
(
n
r−1

)
cn−r+1(x), if n ≥ r − 1

.

From (11) and (12), we observe that
∞∑

n=r−1

c(r)n (x)
tn

n!
=

tr

log(1 + t)
(1 + t)x

= (r − 1)!
(log(1 + t))

r−1

(r − 1)!

(
t

log(1 + t)

)r
(1 + t)x

= (r − 1)!

∞∑
m=r−1

S1(m, r − 1)
tm

m!

∞∑
l=0

B(r)
n (x)

tl

l!
(13)

= (r − 1)

∞∑
n=r−1

(
n∑

l=r−1

(
n

l

)
B

(r)
l (x)S1(n− l, r − 1)

)
tn

n!
.

Thus, comparing the coefficients on both sides of (13) we obtain the following theorem.

Theorem 2. For n ≥ 0,

c(r)n (x) = (r − 1)!

n∑
l=r−1

(
n

l

)
B

(r)
l (x)S1(n− l, r − 1).

Now, from (11), we get that∑
n=r−1

c(r)n (x)
tn

n!
=

tr

log(1 + t)
(1 + t)x

=

( ∞∑
m=r−1

c(r)m
tm

m!

)( ∞∑
l=0

(
x

l

)
tl

)

=

∞∑
n=r−1

(
n∑

l=r−1

(
n

l

)(
x

l

)
c
(r)
n−l

)
tn

n!
. (14)
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Therefore, by comparing coefficient on both sides of (14), we obtain the following
theorem.

Theorem 3. For n ≥ 0 and r ∈ N we have

c(r)n (x) =

n∑
l=r−1

(
n

l

)(
x

l

)
c
(r)
n−l.

For x, y ∈ R, we observe that

∞∑
n=r−1

c(r)n (x+ y)
tn

n!
=

tr

log(1 + t)
(1 + t)x+y

=
tr

log(1 + t)
(1 + t)x(1 + t)y

=

( ∞∑
m=r−1

c(r)m (x)
tm

m!

)( ∞∑
l=0

(
y

l

)
tl

)

=

∞∑
n=r−1

(
n∑

l=r−1

(
n

l

)(
y

l

)
c
(r)
n−l(x)

)
tn

n!
.

(15)

Therefore, by comparing coefficient on both sides of (15), we obtain the following
theorem.

Theorem 4. For x, y ∈ R and n ≥ 0 we have

c(r)n (x+ y) =

n∑
l=0

(
n

l

)(
y

l

)
crn−l(x).

By (5) and (11), we observe that

∞∑
n=0

c(r)n (x)
tn

n!
=

tr

log(1 + t)
(1 + t)x

=
tr

log(1 + t)
× t

log(1 + t)

log(1 + t)

t
(1 + t)x

=

( ∞∑
m=r−1

c(r)m
tn

n!

)( ∞∑
l=0

bl
tl

l

)( ∞∑
i=0

Di(x)
ti

i!

)

=

∞∑
k=r−1

(
k∑

m=r−1

(
k

m

)
c(r)m bk−m

)
tk

k!

( ∞∑
i=0

Di(x)
ti

i!

)

=

∞∑
n=r−1

(
n∑

k=r−1

(
k∑
m

c(r)m bk−mDn−k(x)

))
tn

n!
. (16)

Therefore, by comparing the coefficients on both sides of(16) we get the following
theorem.

Theorem 5. For n ≥ 0, we have

c(r)n (x) =

(
n∑

k=r−1

(
k∑
m

c(r)m bk−mDn−k(x)

))
.
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We observe that

tr(1 + t)x =

∞∑
n=r−1

c(r)n (x)
tn

n!
× log(1 + t)

=

( ∞∑
m=r−1

c(r)m
tm

m!

)( ∞∑
l=1

(−1)l

l
tl

)

=

∞∑
n=r

(
n∑

m=r

c
(r)
m (x)

m!

(−1)n−m

(n−m)

)
tn

(17)

and

(1 + t)xtr =

∞∑
n=0

(
x

n

)
tn+r =

∞∑
n=r

(
x

n− r

)
tn. (18)

By (17) and (18), we obtain the following theorem.

Theorem 6. For n ≥ r, we have
n∑

m=r

b
(r)
m (x)

m!

(−1)n−m

(n−m)
=

(
x

n− r

)
.

Replacing t by et − 1 in (11), we get

(et − 1)

t
× etx =

∞∑
m=r−1

c(r)m (x)
(et − 1)m

m!

=

∞∑
m=r−1

c(r)m (x)

∞∑
n=m

S2(n,m)
tn

n!

=

∞∑
n=r−1

(
n∑

m−r−1

(
n

m

)
c(r)m (x)S2(n,m)

)
tn

n!
. (19)

On the left hand sides of (19), we have

(et − 1)r

t
etx =

r!

t

(et − 1)r

r!
etx

=
r!

t

( ∞∑
m=r

S2(m, r)
tm

m!

)( ∞∑
l=0

xltl

l!

)

=
r!

t

∞∑
n=r

(
n∑

m=r

(
n

m

)
S2(m, r)xn−m

)
tn

n!

= r!

∞∑
n=r

(
n∑

m=r

(
n

m

)
S2(m, r)xn−m

)
tn−1

n!

= r!

∞∑
n=r−1

(
n+1∑

m=r−1

(
n+ 1

m

)
S2(m, r)

xn−m+1

(n+ 1)

)
tn

n!
. (20)

By (19) and (20), we obtain the following theorem.

Theorem 7. For n ≥ r − 1, we have

n∑
m−r−1

(
n

m

)
c(r)m (x)S2(n,m) =

n+1∑
m=r−1

(
n+ 1

m

)
S2(m, r)

xn−m+1

(n+ 1)
.
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From (10) and (11), we can derive the following equation

∞∑
n=r−1

c(r)n (x)
tn

n!
=

log(1 + t)

1 + t

tr

(log(1 + t))2
(1 + t)x+1 (21)

=

( ∞∑
l=1

(−1)l−1Hlt
l

)(
t

log(1 + t)

tr

log(1 + t))
(1 + t)x+1

)

=

( ∞∑
l=1

(−1)l−1Hlt
l

)( ∞∑
l1=0

bl1
tl1

l1!

)( ∞∑
l2=0

c
(r−1)
l2

(x+ 1)
tl2

l2!

)

=

( ∞∑
l=1

(−1)l−1Hlt
l

) ∞∑
k=0

(
k∑

l1=0

bl1c
(r−1)
k−l1 (x+ 1)

(
k

l1

))
tk

k!

=

∞∑
n=1

(
n−1∑
k=0

k∑
l1=0

(
k

l1

)
bl1c

(r−1)
k−l1 (x+ 1)(−1)n−kn!

Hn−k

k!

)
tn

n!
.

Therefore, we obtain the following theorem.

Theorem 8. For n ≥ 1 we have,

c(r)n (x) =

n−1∑
k=0

k∑
l1=0

(
k

l1

)
bl1c

(r−1)
k−l1 (x+ 1)(−1)n−kn!

Hn−k

k!
,

where Hn are the Harmonic numbers.

Now we observe that

tr

log(1 + t)
(1 + t)x =

log(1 + t)

1 + t
· tr

(log(1 + t))2
(1 + t)x+1

=
log(1 + t)

1 + t

log(1 + t)

1 + t
· tr

(log(1 + t))3
(1 + t)x+2

=
log(1 + t)

1 + t

log(1 + t)

1 + t

log(1 + t)

1 + t
· tr

(log(1 + t))4
(1 + t)x+3

= · · ·
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continuing this process, we get

log(1 + t)

1 + t
× · · · × log(1 + t)

1 + t︸ ︷︷ ︸
r−1 times

· tr

(log(1 + t))r
(1 + t)x+r−1

=

 ∞∑
l1=1

(−1)l1−1Hl1t
l1

∞∑
l2=1

(−1)l2−1Hl2t
l2 × · · · ×

∞∑
lr−1=1

(−1)lr−1−1Hlr−1t
lr−1


×

( ∞∑
k=r−1

c(r)n (x+ r − 1)
tn

n!

)

=

∞∑
m=r−1

 ∑
l1+···+lr−1=m

(−1)m+r−1Hl1Hl2 · · ·Hlr−1

 tm

( ∞∑
k=r−1

c(r)n (x+ r − 1)
tn

n!

)

=

∞∑
n=r−1

 n∑
m=r−1

∑
l1+···+lr−1=m

(−1)m+r−1Hl1Hl2 · · ·Hlr−1

c
(r)
n−m(x+ r − 1)n!m!

m!(n−m!)

 tn

n!

=

∞∑
n=r−1

 n∑
m=r−1

∑
l1+···+lr−1=m

(−1)m+r−1Hl1Hl2 · · ·Hlr−1

(
n

m

)
c
(r)
n−m(x+ r − 1)m!

 tn

n!

(22)

Therefore, we obtain the following theorem.

Theorem 9. For n ≥ 1 we have,

c(r)n (x) =


0, if n < r − 1,∑n
m=r−1

∑
l1+···+lr−1=m(−1)m−r+1

×Hl1Hl2 · · ·Hlr−1

(
n
m

)
m!c

(r)
n−m(x+ r − 1), if n ≥ r − 1.
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Results originating from the application of
Euler’s formula to the generating functions
for q-combinatorial Simsek polynomials

Irem Kucukoglu

The main aim of this presentation is to derive new finite sums through the
application of the Euler’s formula to the generating functions for q-combinatorial
Simsek polynomials.

2020 MSC: 05A15, 05A19, 05A30, 11B65, 11B83

Keywords: Combinatorial Simsek numbers and polynomials, q-analogues, q-
analysis, Generating functions, Computation formulas, Finite sums, Trigonometric
functions, Euler’s formula

Introduction
In this presentation, the author aims to introduce new finite sums involving higher-

power of q-binomial coefficients together with sine and cosine functions. Before achiev-
ing this goal, we begin to recall the definition of q-binomial coefficients:[

k
j

]
q

:=
[k]q!

[j]q! [k − j]q!
; (j = 0, 1, . . . , k) (1)

where [k]q! denotes the q-factorial:

[k]q! :=

{
1 if k = 0,
[k]q [k − 1]q . . . [2]q [1]q if k ∈ N (2)

in which

[k]q :=
1− qk

1− q
= 1 + q + q2 + · · ·+ qk−1 (3)

for q ∈ C \ {1} and a nonnegative integer k (cf. [4]; and also see [2, 3]).
In [7], the author have recently handled finite sums involving higher-power of q-

binomial coefficients and introduced the q-combinatorial Simsek numbers y6,q (n, k;λ, r)
and the q-combinatorial Simsek polynomials y6,q (x;n, k;λ, r) of the sixth kind respec-
tively by the following finite sums:

y6,q (n, k;λ, r) =
1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

[j]
n
q λ

j (4)

and

y6,q (x;n, k;λ, r) =
1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

[x+ j]
n
q λ

j , (5)
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where λ ∈ R (or C) and n, k, r are nonnegative integers (cf. [7]).
Observe that

y6,q (n, k;λ, r) = y6,q (0;n, k;λ, r) .

As the author also stated in [7], by setting r = 1 in (4) and (5), we have

y6,q (n, k;λ, 1) = y1,q (n, k;λ) (6)

and
y6,q (x;n, k;λ, 1) = y1,q (x;n, k;λ) (7)

where y1,q (n, k;λ) and y1,q (x;n, k;λ) denotes, in turn, the q-combinatorial Simsek
numbers and polynomials of the first kind which have been recently introduced by
the author [6] by the following finite sums:

y1,q (n, k;λ) =
1

[k]q!

k∑
j=0

q(
j
2)
[
k

j

]
q

[j]
n
q λ

j (8)

and

y1,q (x;n, k;λ) =
1

[k]q!

k∑
j=0

q(
j
2)
[
k

j

]
q

[x+ j]
n
q λ

j . (9)

As stated in [7], when q goes to 1, the equation (4) and (5) implies

lim
q→1

y6,q (n, k;λ, r) = y6 (n, k;λ, r) =
1

k!

k∑
j=0

(
k
j

)r
jnλj

and

lim
q→1

y6,q (x;n, k;λ, r) = P (x;n, k;λ, r) =

n∑
j=0

(
n
j

)
xn−jy6(j, k;λ, r).

where y6 (n, k;λ, r) and P (x;n, k;λ, r) denotes, in turn, the combinatorial Simsek
numbers and polynomials of the sixth kind which have been recently introduced and
investigated by Simsek in [10] and [12].

Besides, as stated in [7], when q goes to 1 and r = 1, the equation (4) yields

lim
q→1

y6,q (n, k;λ, 1) = y1 (n, k;λ)

where y1 (n, k;λ) denote the combinatorial Simsek numbers and polynomials of the
first kind recently introduced and investigated by Simsek in [11].

In addition to the above special case, as stated in [7], when q goes to 1 and λ = 1,
the equation (4) gives

lim
q→1

y6,q (n, k; 1, r) =
1

k!

k∑
j=0

(
k

j

)r
jn

which is of a wide variety relationships with some special finite sums. To see the
mentioned relationships, the reader may refer to [12] and the references cited therein.

Additionally, as stated in [7], when r = 1 and λ = −1, the equation (4) also yields

y6,q (n, k;−1, 1) = q(
k
2)S2,q (n, k) (10)
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where S2,q (n, k) denotes the q-Stirling numbers of the second kind defined by Car-
litz in [1], and the numbers S2,q (n, k) are expressed with the help of the following
formulae:

S2,q (n, k) =
q−(k2)

[k]q!

k∑
j=0

(−1)
j
q(
j
2)
[
k

j

]
q

[k − j]nq (11)

and

[x]
n
q =

n∑
k=0

q(
k
2)
[
x

k

]
q

[k]q!S2,q (n, k) (12)

(cf. [1, 5, 9]).
For detailed analysis, special cases and features of the q-combinatorial Simsek

numbers and polynomials, the reader may refer to the author’s recent works [6], [7], [8].

Main results
In this study, we first introduce an exponential generating functions for the q-

combinatorial Simsek polynomials y6,q (x;n, k;λ, r) of the sixth kind:

Gy6,q
(t, x; k;λ, r) :=

∞∑
n=0

y6,q (x;n, k;λ, r)
tn

n!
. (13)

The combination of (13) with (5) gives

Gy6,q
(t, x; k;λ, r) =

1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj
∞∑
n=0

[x+ j]
n
q

tn

n!
. (14)

The infinite series on the right-hand side of (14) is the Taylor series expansion of the
function exp

(
[x+ j]q t

)
. Therefore, from the above equation we deduce the following

theorem:

Theorem 1. Let k ∈ N0. Then we have

Gy6,q
(t, x; k;λ, r) =

1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj exp
(

[x+ j]q t
)
. (15)

Let i2 = −1. Substituting t = iθ into (15) implies

Gy6,q
(iθ, x; k;λ, r) =

1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj exp
(

i [x+ j]q θ
)
. (16)

By using the well-known Euler’s formula:

exp (iα) = cos (α) + i sin (α)

in the equation (16) with the replacement α by [x+ j]q θ, we get

Gy6,q
(iθ, x; k;λ, r) =

1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj

×
(

cos
(

[x+ j]q θ
)

+ i sin
(

[x+ j]q θ
))

.
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Considering real and imaginary parts of the above equation as a generating function,
we define two new finite sums:

GCy6,q (θ, x; k;λ, r) := Re{Gy6,q
(iθ, x; k;λ, r)}

=
1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj cos
(

[x+ j]q θ
)

=

∞∑
k=0

Cy6,q
(x; k;λ, r)

θk

k!
(17)

and

GSy6,q (θ, x; k;λ, r) := Im{Gy6,q
(iθ, x; k;λ, r)}

=
1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj sin
(

[x+ j]q θ
)
.

=

∞∑
k=0

Sy6,q (x; k;λ, r)
θk

k!
. (18)

By using the Taylor series expansion of the function cos
(

[x+ j]q θ
)
in (17), we

get

1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj
∞∑
k=0

(−1)
k

[x+ j]
2k
q

θ2k

(2k)!
=

∞∑
k=0

Cy6,q
(x; k;λ, r)

θk

k!
.

Comparing the coefficients of θk

k! on both sides of the above equation, we get the
following theorem:

Theorem 2. Let k be a nonnegative integer. Then we have

Cy6,q
(x; 2k;λ, r) =

(−1)
k

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj [x+ j]
2k
q

and

Cy6,q
(x; 2k + 1;λ, r) = 0.

By using the Taylor series expansion of the function sin
(

[x+ j]q θ
)
in (18), we

get

1

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj
∞∑
k=0

(−1)
k

[x+ j]
2k+1
q

θ2k+1

(2k + 1)!
=

∞∑
k=0

Sy6,q (x; k;λ, r)
θk

k!
.

Comparing the coefficients of θk

k! on both sides of the above equation, we get the
following theorem:

Theorem 3. Let k be a nonnegative integer. Then we have

Sy6,q
(x; 2k + 1;λ, r) =

(−1)
k

[k]q!

k∑
j=0

q(
j
2)
[
k
j

]r
q

λj [x+ j]
2k+1
q

and

Sy6,q (x; 2k;λ, r) = 0.
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Conclusion
As conclusion, this study presents two new finite sums involving higher-power

of q-binomial coefficients together with sine and cosine functions. Future plan is to
investigate these new two sums and provide their further properties and relationships
with other special sums.
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Interconnections and relationships among
Fubini numbers and special numbers

Jongkyum Kwon

In this paper, we examine the interconnections between Fubini numbers
and a range of recently defined special numbers, including the Lah-Bell num-
bers, the Changhee numbers, and the Dahee numbers, along with several other
established special numbers. We explore these relationships by analyzing the
generating functions associated with these numbers, which enables us to estab-
lish diverse formulae for Fubini numbers in relation to other special numbers.
Additionally, we uncover new properties of Fubini numbers through this investi-
gation. Furthermore, by employing formal power series of generating functions,
we establish general identities for special numbers, thereby extending our un-
derstanding of their properties and relationships.

2020 MSC: 11B83, 11B68, 11B73
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On the infinite series whose terms involve
truncated lambda-exponentials

Sang Jo Yun 1, Jongkyum Kwon 2 and Jin-Woo Park ∗3

The degenerate logarithm functions which are the compositional inverse of
the degenerate exponentials which were defined by Kim-Kim play an important
role in studies on degenerate versions of many special numbers and polynomi-
als. In this paper, we investigate infinite series whose terms involve truncated
lambda-exponentials with binomial coefficients, the degenerate falling factorials,
the Stirling numbers of the second kind and degenerate Stirling numbers of the
second.
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Probabilistic degenerate Bernoulli and
degenerate Euler polynomials

Lingling Luo ∗1, Taekyun Kim 2, Dae San Kim 3 and Yuankui Ma 4

Recently, many authors have studied degenerate Bernoulli and degenerate
Euler polynomials. Let Y be a random variable whose moment generating func-
tion exists in a neighborhood of the origin. We introduce and study the prob-
abilistic extension of degenerate Bernoulli and degenerate Euler polynomials,
namely the probabilistic degenerate Bernoulli polynomials associated with Y
and the probabilistic degenerate Euler polynomials associated with Y . Also,
we introduce the probabilistic degenerate r-Stirling numbers of the second kind
associated with Y and the probabilistic degenerate two variable Fubini poly-
nomials associated with Y . We obtain some properties, explicit expressions,
recurrence relations and certain identities for those polynomials and numbers.
As special cases of Y , we treat the gamma random variable with parameters
α, β > 0, the Poisson random variable with parameter α > 0, and the Bernoulli
random variable with probability of success p.
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A study on the r-truncated Lah numbers and
r-truncated Lah-Bell polynomials and their

applications
Lee-Chae Jang

In this presentation, we define r-truncated Lah numbers and Lah-Bell poly-
nomials, and investigate some useful identities of them. Furthermore, we obtain
some related identities between the expected value of Poisson random variable
and r-truncated Lah-Bell polynomials.
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A note on degenerate poly-Bernoulli
numbers and polynomials

Lee-Chae Jang

Kaneko [1] studied the poly-Bernoulli polynomials which are defined by using
the polylogarithm functions. In this presentation, we study the degenerate poly-
Bernoulli polynomials and numbers arising from polyexponential functions, and
derive their explicit expressions and some identity involving them.
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On a Jakimovski-Leviatan type operators
defined via q-multiple Appell polynomials

Merve Çil ∗1 and Mehmet Ali Özarslan 2

In this paper, by using q-multiple Appell polynomials we introduce a form of
Jakimovski-Leviatan type positive linear operators. We investigate convergence
properties of our operators such as Krovkin-type approximation properties and
calculate the rate of first order modulus of continuity, second order modulus of
smoothness, Petree’s K-functional and two kind of Lipschitz type space.
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Prime submodule with respect to a
multiplication set

Ortaç Öneş ∗1 and Mustafa Alkan 2

In this study, we define a prime submodule with respect to a multiplicative
set, which generalizes the definition of S-prime submodule. We focus on the
structure of prime submodules with respect to a multiplicative set under quotient
module and module homomorphism.

2020 MSC: 16N60, 16U20

Keywords: Prime ideal, Prime submodule, Multiplicative set

Introduction
Throughout this study, all rings are commutative with identity and all modules

are unitary.
Let P be a submodule of M over a ring R. The ideal (P : M) is defined as the set
{r ∈ R : rM ⊆ P}. A proper submodule P of M is called prime if whenever r ∈ R,
m ∈ M and rm ∈ P , then m ∈ P or r ∈ (P : M). Let SpecR(M) be the set of
all prime submodules of an R-module M . For example, SpecZ(Z) = {0} ∪ {pZ : p
is prime}. As well known, prime submodules plays an important role to characterize
modules and has been studied for long time by a lot of authors (cf. [1, 3, 5, 6]).
Let R be an integral domain and let M be an R-module.

T (M) = {m ∈M : there exists 0 6= r ∈ R such that rm = 0}

is a submodule of M . If T (M) = 0, M is called torsion free.
The following theorem gives a direct connection among prime ideal, prime sub-

module and torsion free module.

Theorem 1. Let R be a ring and let M be an R-module. Then a submodule P of
M is prime if and only if (P : M) is a prime ideal of R and M/P is a torsion free
R/P -module.

A multiplicative set is a subset S of a ring R such that 1R ∈ S and xy ∈ S for all
x, y ∈ S.
We define a prime submodule with respect to a multiplicative set, which is called SS-
prime. This definition generalizes the definition of S-prime submodule. We examine
quotient prime submodules with respect to a multiplicative set and its structure under
module homomorphism.

Main results
Definition 2 (cf. [7]). Let P be a submodule of M over a ring R and let S be a
multiplicative set. If rm ∈ P and (P : M) ∩ S = ∅ implies sr ∈ (P :R M) or sm ∈ P
for any r ∈ R and m ∈M , P is called a S-prime submodule of M .
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We generalizes the above definition as follows.

Definition 3. A submodule P of M over a ring R is called SS-prime
if there are s1 ∈ S1 and s2 ∈ S2 such that S1 ⊆ S2, rm ∈ P and
(P : M) ∩ S2 = ∅ implies s1r ∈ (P :R M) or s2m ∈ P for any r ∈ R and m ∈ M .
The set of all SS-prime submodules is denoted by SpecSS(M).

Let S be a multiplicative set in R and letM be a module over R. S−1M is defined
by the quotient module of M .

Proposition 4. Let M be a module over a ring R. If P is a SS-prime submodule of
R-module M , then S−1

2 P is a SS-prime submodule of S−1
1 R-module S−1

2 M .

Proof. Assume that P is prime submodule. Let
r

s1
∈ S−1

1 R and
m

s2
∈ S−1

2 M such

that
rm

s1s2
∈ S−1

2 P . Then there exists the element s∗2 in S2 such that s∗2rm ∈ P

and it follows s∗∗2 m ∈ P or s∗1s∗2r ∈ (P : M) with assumption. Then we have that
m

s2
=

s∗∗2 m

s∗∗2 s2
∈ S−1

2 P or
r

s1
=

s∗1s
∗
2r

s∗1s
∗
2s1
∈ S−1

2 (P : M) ⊆
(
S−1

2 P : S−1
2 M

)
, implying

that S−1
2 P is SS-prime submodule.

Proposition 5. Let M1 and M2 be modules over a ring R and let
f : M1 →M2 be an R-module homomorphism. If

P2 ∈ SpecSS(M2) and
(
f−1(P2) : M1

)
∩ S2 = ∅,

then
f−1(P2) ∈ SpecSS(M1).
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On the relation between palindrome
compositions and Fibonacci numbers

Busra Al 1 and Mustafa Alkan ∗2

In this note, we deal with the composition sets and the palindrome compo-
sition sets. Then we define polindrome color compositions and get the integer
sequence for the numbers of polindrome color compositions.

2020 MSC: 05A15, 05A17, 05A18, 11B39, 11B99

Keywords: Compositions of the integers, The n-color compositions of the inte-
gers, Palindromes compositions, Fibonacci numbers, Generating function

Introduction
In literature, one can find concepts that are presented in a straightforward manner

or clearly defined, which possess significant characteristics and can be applied in vari-
ous contexts. In the realm of mathematics, both Fibonacci numbers and compositions
of a positive integer are examples of such concepts. Since the establishment of these
concepts, they have garnered the interest of numerous scientists, and their findings,
which have yielded significant ramifications, have made remarkable contributions to
nearly all scientific disciplines. These findings have resulted in the advancement of
mathematical analysis and number theory.

The Fibonacci numbers denoted by fn are that each number is the sum of the
two preceding ones, starting from 0 and 1. That is, f0 = 0, f1 = 1 and fn = fn−1

+fn−2 for n > 1. The intricate relationship between the Fibonacci numbers and the
golden ratio is deeply intertwined with various disciplines of science and technology.
Likewise, the extrapolations of Fibonacci numbers and the other distinctive numbers
are employed in numerous mathematical frameworks.

A composition of an integer n is a representation of n as a sum of positive inte-
gers. In the combinatorics, a classical result about the number of compositions of n
with an integer k parts is given by the coefficient of xn of the polynomial or power

series
( ∞∑
i=1

xi
)k

where |x| < 1. These coefficients exhibit fascinating mathematical

properties, closely resembling Binomial coefficients and have many useful applications
(cf. [1, 2, 10, 15, 19, 20, 21, 26]).

In the study conducted by Hoggart and Lind, as documented in the publication by
Hoggatt [21], an examination was made into the correlation between the composition
of an integer and Fibonacci numbers. This investigation utilized Binomial properties
and resulted in a proof.

(i) fn is the number compositions of an integer n into odd parts
(ii) f2n is the sum of the products of the parts over all compositions of an integer

n, i.e.
f2n =

∑
a1+a2+...+ak=n

a1a2...ak. (1)
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Recently, there has been interested n-color compositions of an integer m is defined
as composition of m for which a part of size n can take on n color (cf. [1, 2, 26]).
Then by the identity equation (1), it is clear that the number of n-color compositions
of an integer m is f2m the 2mth Fibonacci number.

The composition (1, 2) of 3 is colored as

(11, 21), (11, 22),

and so the color composition of 3

(31), (32), (33), (11, 21, ), (11, 22), (21, 11), (22, 11), (11, 11, 11).

There are twenty one n-color compositions of 4:

(41), (42), (43), (44), (11, 31, ), (11, 32), (11, 33), (31, 11), (32, 11),

(33, 11), (21, 21), (21, 22), (22, 21), (22, 22), (21, 11, 11), (11, 21, 11),

(11, 11, 21), (22, 11, 11), (11, 22, 11), (11, 11, 22), (11, 11, 11, 11).

A palindrome composition is a composition whose part-sequence is the same
whether it is read from left to right to right to left. In [18], it is shown that are
2‖

n
2 ‖ palindromes of an integer n and also in [26], Shapcott investigated the formula

for the number of color palindromes of an integer n.
We denote the composition set of an integer n as follows:

Pn =
{

(a1, a2, ..., at) : a1 + a2 + ...+ at = n, ai, t ∈ Z+
}
.

Then from [4], we recall the following operations for the element a = (a1, a2, ..., at) ∈
Pn and an integer j;

(j � a) = (j, a1, a2, ..., at) ,

(j ⊕ a) = (a1 + j, a2, ..., at) .

Then we use the notations j ⊕ Pn and j � Pn for the following sets

j ⊕ Pn = {l ⊕ a : a ∈ Pn},
j � Pn = {l � a : a ∈ Pn}.

Theorem 1 (cf. [4]). Let n, r be positive integers (r ≤ n). Then the set Pn is disjoint
union of the sets

(r ⊕ Pn−r) and (i� Pn−i)

for all i ∈ {1, . . . , r}, i.e.

Pn = (∪ri=1(i� Pn−i) ∪ (r ⊕ Pn−r).

Proof. It is sufficient to prove the inclusion Pn ⊆ (∪ri=1(i� Pn−i) ∪ (r ⊕ Pn−r).
Let x = (a1, . . . , am) ∈ Pn. If a1 ≤ r then x ∈ ∪ri=1 (i� Pn−i).
Now assume that r < a1. Then b = a1 − r and so define the element

y = (b, a2, a3, . . . , am) ∈ Pn−r. Then it is clear that x = r ⊕ y ∈ (r ⊕ Pn−r).
It is also clear that (r ⊕ Pn−r) ∩ (i� Pn−i) = ∅ for all i ∈ {1, . . . , r}.

Then we also get the following result in [4, Theorem 5].

Corollary 2 (cf. [4]). For a positive integer n, we have

Pn+1 = (1⊕ Pn) ∪ (1� Pn).
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The positive integer n greater than 3 can be represented as either
x = (c, 2, c) or x = (c, 1, c), where c is an integer and the parts with size c can
be colored in c different colors, while the middle parts can be colored in white. Sub-
sequently, the arrangement of x exhibits a symmetrical pattern in terms of colors,
and we designate the color that forms the palindrome in the segment x. The color
composition of an integer that consists of palindrome color parts is referred to as
the palindrome color composition of the integer. Subsequently, we can depict the
arrangement of the palindrome color (7,5,10) in the subsequent manner:

Then we compute the sequence for the palindrome color compositions

1, 2, 4, 8, 17, 35, 73, 151, ...

We wonder about determining the recurrence relation and generating functions
for this sequence, as well as exploring any relationships it may have with Fibonacci
numbers.
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New type Szász-Mirakyan operators
Mustafa Kara

Approximation theory, which has great application potential, is one of the
significant research topics of mathematical analysis and has been studied by
many mathematicians around the world. One of the strongest aspects of ap-
proximation theory is that it sheds light on many scientific problems in other
fields, especially basic sciences and engineering sciences. One of the most im-
portant of these is Szász’s generalization of Bernstein polynomials to infinite
intervals as classical Szász-Mirakyan operators in 1950 as follows:

Sn(f ;x) = ne−nx
∞∑
k=0

f

(
k

n

)
xknk

k!
, x ∈ [0,∞) , n ∈ N,

for the function f ∈ [0,∞).
In this paper, we introduce new generalazition of of Szász-Mirakjan operators

M∗n (f ;x) :=

∞∑
k=0

sn,k(x)f

(
k

n

)
,

where

sn,k(x) = ne−nτ
xk−1nk

k!

(
k

n
− x
)2

.

Respectively, the local approximation properties of these operators are given
through Peetreís K-function and rate of convergence by utilizing the ordinary
of modulus of continuity and lipschitz type maximal functions are studied.
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A note on a Voronovskaya-type relation for
positive linear operators based on

Bernoulli-type polynomials
Mine Menekşe Yılmaz

One of the main problems in approximation theory is estimating the rate of
convergence of sequences of positive linear operators. Voronovskaya-type formu-
lae are one of the most useful tools for studying this. In 1932, [13], Voronovskaya
gave a relation for Bernstein polynomials, [5], that if f ∈ C2([0, 1]), then the
following equality holds:

lim
n→∞

n
[
B̃n (f ;x)− f (x)

]
=
x(1− x)

2!
f ′′ (x) .

This relation was later studied for some other linear positive operators by
[4, 6, 7, 8, 9]. In constructing a Voronovskaya-type formula for a sequence
of operators, some properties of the operators, such as central moments, need
to be known. That is why the central moments of the studied operator will
be mentioned in this study. For investigation we chose an operator containing
the Bernoulli-type polynomial whose definition is given in [12]. Based on the
concepts mentioned, it will be presented that the Voronovskaya type formula
is valid for an operator sequence containing Bernoulli-type polynomials. For
some articles on certain polynomials or operators that are based on mentioned
polynomials, we recommend articles [1, 2, 3, 10, 11].
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Incomplete Hermite Appell polynomials and
their properties

Mehmet Ali Özarslan

The purpose of this study is to introduce the incomplete Hermite Appell
polynomials and investigate their certain properties such as recurrence relations,
lowering and raising operators, differential equations. Moreover, we derive sev-
eral families of multilinear and mixed multilateral finite series relations and
generating functions for the incomplete Hermite Appell polynomials.
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A characterization of rotational minimal
surface in dual Lorentzian space

Sousan Latifinavid 1, Nemat Abazari ∗2 and Yusuf Yayli 3

In this paper, we have considered a variation problem that its solution is
related to the generating curves of rotational surface in the dual Lorentzian
space. It is shown that these curves have similar properties as a center of
mass with some curves of space. Also, it is shown that this characterization of
rotational minimal surface in the dual Lorentzian space is an extension of the
known properties of the catenary and the catenoid in the Euclidean space.
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On generating functions for parametric kinds
of unified and modified presentation of

Fubini polynomials
Neslihan Kilar

The main goal of this paper is to examine the unified and modified presen-
tation of Fubini polynomials and their parametric kinds. The relations between
these polynomials and other special polynomials are given with the help of their
generating functions. Finally, some special cases are also given for the Fubini
type numbers and polynomials.
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Keywords: Generating functions, Fubini type numbers and polynomials, Unified
and modified presentation of Fubini numbers and polynomials, Special polynomials

Introduction
Special numbers, polynomials, and functions are used in many areas of mathemat-

ics and computer modeling. One of them, the Fubini numbers, are widely applications
in number theory and enumerative combinatorics. These numbers count the number
of weak orderings on a set of n elements. In addition to these, enumerations of certain
trees, Cayley permutations, ordered multiplicative partitions of square free numbers,
and the outcome of a horse race are also used. Many researchers have been studied
different generalizations and parametric kinds of the Fubini numbers (cf. [1]- [22]).
With the help of generating function methods, we investigate some of their properties
of these numbers and polynomials and give some novel formulas.

The generating function of Fubini numbers is given by

1

2− et
=

∞∑
n=0

wg (n)
tn

n!
(1)

(cf. [2, 3]).
The generating functions of Fubini type numbers and polynomials of order r are

given by
2r

(2− et)2r =

∞∑
n=0

a(r)
n

tn

n!
(2)

and
2reyt

(2− et)2r =

∞∑
n=0

a(r)
n (y)

tn

n!
(3)

(cf. [9]).
When r = 1 in (1), the following well-known relation is given (cf. [9]):

a(1)
n =

n∑
p=0

(
n

p

)
wg (p)wg (n− p) .

168 Antalya, TURKEY



THE PROCEEDINGS BOOK OF GFSNP 2024

The generating functions of polynomials Cn (y, u) and Sn (y, u) are given by

eyt cos (ut) =

∞∑
n=0

Cn (y, u)
tn

n!
(4)

and

eyt sin (ut) =

∞∑
n=0

Sn (y, u)
tn

n!
(5)

(cf. [19]). Note that the polynomials Cn (y, u) and Sn (y, u) are the Taylor-Maclaurin
expansions of the two functions (cf. [12, 14, 15, 18, 19, 21]; see also the references
cited therein).

Recently, Kilar and Simsek [15] defined the generating functions for unified and
modified presentation of Fubini numbers and polynomials of order r, respectively:

2r

(µbt − ϑ)
2r =

∞∑
n=0

a(r)
n (µ;ϑ, b)

tn

n!
(6)

and
2r

(µbt − ϑ)
2r d

tx =

∞∑
n=0

a(r)
n (x, µ;ϑ, b, d)

tn

n!
, (7)

where b, d ∈ R+ with b, d ≥ 1, ϑ, µ, t ∈ C and µ 6= ϑ, |t| < 2π
|ln b| when µ =

ϑ;
∣∣t ln b+ ln

(
µ
ϑ

)∣∣ < 2π when µ 6= ϑ; 1r := 1.
Using (7), Kilar and Simsek also defined the parametric kinds of unified and

modified presentation of Fubini polynomials of order r:

2rety ln d

(µbt − ϑ)
2r cos (tu ln d) =

∞∑
n=0

a(r,C)
n (y, u, µ;ϑ, b, d)

tn

n!
(8)

and
2rety ln d

(µbt − ϑ)
2r sin (tu ln d) =

∞∑
n=0

a(r,S)
n (y, u, µ;ϑ, b, d)

tn

n!
(9)

(cf. [15]).
As a special case when b = d = e, µ = 1, ϑ = 2, (8) and (9) reduced to the two

parametric kinds of Fubini-type polynomials:

a(r,C)
n (y, u, 1; 2, e, e) = a(r,C)

n (y, u)

and
a(r,S)
n (y, u, 1; 2, e, e) = a(r,S)

n (y, u)

and also the generating functions of polynomials a(r,C)
n (y, u) and a(r,S)

n (y, u) are given
by

2rety

(et − 2)
2r cos (tu) =

∞∑
n=0

a(r,C)
n (y, u)

tn

n!

and
2rety

(et − 2)
2r sin (tu) =

∞∑
n=0

a(r,S)
n (y, u)

tn

n!

(cf. [21]).
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Main results
In this section, by making use of the generating function methods, we obtain some

formulas for the polynomials a(r,C)
n (y, u, µ;ϑ, b, d) and the polynomials a(r,S)

n (y, u, µ;ϑ, b, d),
some special polynomials and the Fubini type numbers.

Theorem 1. For n ∈ N0, we have

a(r,C)
n (y, u, µ;ϑ, b, d) =

n∑
p=0

(
n

p

)
a(r)
p (µ;ϑ, b)Cn−p (y ln d, u ln d) . (10)

Proof. From (4), (6) and (8), we can write

∞∑
n=0

a(r,C)
n (y, u, µ;ϑ, b, d)

tn

n!
=

∞∑
n=0

a(r)
n (µ;ϑ, b)

tn

n!

∞∑
n=0

Cn (y ln d, u ln d)
tn

n!
.

Thus
∞∑
n=0

a(r,C)
n (y, u, µ;ϑ, b, d)

tn

n!
=

∞∑
n=0

n∑
p=0

(
n

p

)
a(r)
p (µ;ϑ, b)Cn−p (y ln d, u ln d)

tn

n!
.

Equating the coefficients of t
n

n! on both sides of this last equation, we arrive at Theorem
1.

Combining the following relation

Cn (kz, kω) = knCn (z, ω)

(cf. [12]) with (10), we have the following corrollary:

Corollary 2. For n ∈ N0, we have

a(r,C)
n (y, u, µ;ϑ, b, d) =

n∑
p=0

(
n

p

)
(ln d)

n−p
a(r)
p (µ;ϑ, b)Cn−p (y, u) .

Theorem 3. For n ∈ N0, we have

a(r,S)
n (y, u, µ;ϑ, b, d) =

n∑
p=0

(
n

p

)
a(r)
p (µ;ϑ, b)Sn−p (y ln d, u ln d) . (11)

Proof. By (5), (6) and (9), we obtain

∞∑
n=0

a(r,S)
n (y, u, µ;ϑ, b, d)

tn

n!
=

∞∑
n=0

a(r)
n (µ;ϑ, b)

tn

n!

∞∑
n=0

Sn (y ln d, u ln d)
tn

n!
.

Hence
∞∑
n=0

a(r,S)
n (y, u, µ;ϑ, b, d)

tn

n!
=

∞∑
n=0

n∑
p=0

(
n

p

)
a(r)
p (µ;ϑ, b)Sn−p (y ln d, u ln d)

tn

n!
.

Equating the coefficients of t
n

n! on both sides of this last equation, we arrive at Theorem
3.
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From
Sn (kz, kω) = knSn (z, ω)

(cf. [12]) and (11), we obtain the following corrollary:

Corollary 4. For n ∈ N0, we have

a(r,S)
n (y, u, µ;ϑ, b, d) =

n∑
p=0

(
n

p

)
(ln d)

n−p
a(r)
p (µ;ϑ, b)Sn−p (y, u) .

When b = d = e µ = 1 ϑ = 2 in (10) and (11), we get the following corrollary
given by Srivastava and Kızılateş [21].

Corollary 5. For n ∈ N0, we have

a(r,C)
n (y, u) =

n∑
p=0

(
n

p

)
a(r)
p Cn−p (y, u)

and

a(r,S)
n (y, u) =

n∑
p=0

(
n

p

)
a(r)
p Sn−p (y, u)

(cf. [21]).
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The second omega coindex
Nurten Urlu Ozalan

It has been recently introduced the second omega index to identify a variety
of topological and combinatorial aspects of a graph with a new viewpoint. As a
continues study of second omega index, by considering non-incidency of edges,
in this paper we introduce the second omega coindex Ω2 and then compute it
over some well-known graph classes.

2020 MSC: 05C05, 05C50, 05C75

Keywords: Graph, Topologic index, Degree sequence

Introduction
Consider a simple graph G = (V,E) with vertex set V (G) = {v1, v2, ..., vn} and

edge set E = E(G), where |V (G)| = n is the number of vertices and |E(G)| = m
is the number of edges. In graph theory, a number that is invariant under graph
automorphisms is referred to as a graphical invariant. It is often regarded as a struc-
tural invariant relevant to a graph. The term topological index is often reserved for
graphical invariant in molecular graph theory. In the mathematical and chemical lit-
erature, several dozens of vertex-degree-based graph invariants (usually referred to as
“topological indices”) have been introduced and extensively studied [1, 3].

One of the newest graph invariant is Second Omega Index, first introduced in [4].
Firstly we recall the definition of second omega invariant:

Ω2(G) =
∑
ij∈E

[(i− 2)ai][(j − 2)aj ], (1)

where 1 ≤ i, j ≤ ∆. The importance of the second omega index is coming from the
consideration of both a graph and a degree sequence of that graph, and so it should
be thought as a upgraded version of the omega index [2].

In [4], the second omega indices of some well-known graph classes were calculated.
Moreover, this topological index was considered for any tree and the obtained results
related to it. The second omega index was given for the derived graphs, including line
subdivision and vertex semitotal graph. Besides, the second omega indices of these
derived graphs were demonstrated by calculating it for some graph classes.

Main results
In light of the second zagreb coindex and in a quite similar manner, related to

nonadjacent edges, we have considered the second omega coindex. After all, for a
realizable degree sequence DS(G) = {1(a1), 2(a2),(a3) , . . . ,∆(a∆)} with its realization
G, the second omega coindex is defined as

Ω2(G) =
∑
ij /∈E

[(i− 2)ai][(j − 2)aj ]. (2)

The first result will be about the star graphs and direct outcomes of it.
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Theorem 1. For the star graph Sn, we get

Ω2(Sn) =
(n− 2)(n− 1)3

2
.

Proof. Considering the non-adjacent edges of the star graph;

Ω2(Sn) = [1 + 2 + 3 + ...+ (n− 2)]
[
(1− 2)(n− 1)2

]
=

(n− 2)(n− 1)3

2
.

Theorem 2. For the complete bipartite graph Kr,s,

Ω2(Kr,s) =
r3(r − 1)(s− 2) + s3(s− 1)(r − 2)

2
.

Theorem 3. For the tadpole graph Tr,s, we get

Ω2(Tr,s) = −1

for all r > 2.

Theorem 4. For the wheel graph Wn, the second omega coindex is

Ω2(Wn) = (
(n− 4)(n− 3) + 2(n− 4)

2
)(n− 1)2.

Theorem 5. For the path graph Tr,s, we get

Ω2(Tr,s) = −1

for all r > 2.

Theorem 6. For a path graph Pn, we get

Ω2(Pn) = 4.

Finaly, from above theorems and the results in [4],we arrive at the following Corol-
lary:

Corollary 7. For the star graph Sn, tadpole graph Tr,s, path graph Pn and complete
graph Cn,

Ω2(Sn) ≤ Ω2(Sn)

Ω2(Tr,s) ≤ Ω2(Tr,s)

Ω2(Pn) ≤ Ω2(Pn)

Ω2(Cn) = Ω2(Cn) = 0.
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Controllability analysis of linear state-delay
fractional systems
Nazim Idrisoglu Mahmudov

In this research paper, our focus is on investigating the controllability of
linear time delay differential equations. It is important to differentiate between
the notions of function controllability and controllability in Euclidean space
(relative controllability) for these equations. This distinction arises because
although the solutions of these equations are trajectories in Euclidean space, the
natural "state space" is actually a function space. For the purposes of this study,
we limit our discussion to controllability in Euclidean space. Furthermore, unlike
in the case of ordinary differential equations, it is necessary to also distinguish
between the concepts of complete controllability and null controllability when
it comes to controllability in Euclidean space.

Chyung and Lee initially explored the concept of complete controllability
in Euclidean space, focusing on a linear controlled hereditary system described
by multi-delay differential equations [7]. In 1967, Kirillova and Curakova [14]
introduced algebraic criteria for the null controllability of linear autonomous
time-delay differential equations in Euclidean space. Building upon this work,
Gabasov and Curakova [10] demonstrated that the conditions derived in [14]
are not only necessary but also sufficient for achieving complete controllability,
see also [11], [16]. Weiss [17] extended the understanding of controllability by
obtaining an algebraic sufficient condition for time-varying differential-difference
equations, encompassing the findings of Buckalo [5] as a special case. Recently,
Choudhury [6] published results closely related to those presented by Gabasov
and Curakova [10].

In recent decades, the field of fractional calculus has experienced signifi-
cant advancements due to its broad range of applications in various scientific
and engineering domains. Mathematical tools derived from fractional calculus
have proven to be highly effective in describing numerous real-world phenomena.
These applications encompass diverse areas such as fluid dynamics, arkeology,
electrode-electrolyte polarization, transmission modeling, control theory of con-
tinuous/discrete dynamical systems, electrical networks, optics, signal process-
ing, and more.

The controllability analysis for fractional linear delay systems is typically
based on fractional calculus and control theory. Fractional calculus extends the
concept of derivatives and integrals to non-integer orders, allowing the modeling
and analysis of systems with fractional dynamics. Fractional delay systems
introduce additional complexity due to the presence of fractional orders in the
system’s dynamics.

The controllability of fractional linear delay systems depends on various
factors, including the system’s structure, the fractional orders of the delays,
and the available control inputs. Fractional order delays can lead to rich and
intricate dynamics, and analyzing controllability in such systems can be chal-
lenging. Techniques such as fractional differential equations, fractional Laplace
transforms, and fractional control theory are commonly used to analyze the
controllability properties of fractional linear delay systems.

It is important to note that the field of fractional calculus and fractional
control theory is still an active area of research. Developing efficient analysis
techniques and control strategies for fractional linear delay systems is an ongoing
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topic of investigation, and different approaches may be employed depending on
the specific system characteristics and requirements.

We study the relative controllability of a linear fractional system with delay{
Dα

0+y (t) = Ay (t) +By (t− h) + Cu (t) , t ∈ (0, T ] , h > 0,
y (0) = y0, y (t) = ϕ (t) , −h ≤ t < 0.

(1)

Here 1
2
< α ≤ 1, A,B are d×d constant matrices, C is an d×r constant matrix.

We assume that the initial condition ϕ (t) is continuous on the interval [−h, 0]
and an admissible control u ∈ L2 ([0, T ] ,Rr) .

2020 MSC: 44A10, 55R50
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Estimation of concrete strength by using
maturity method

Niyazi Ugur Kockal
The strength of concrete is an important mechanical parameter that affects

all other properties. Nowadays, different methods are used to estimate the
strength of concrete. These are generally divided into two, namely, destructive
and non-destructive methods. In addition, maturity relations can be used to
obtain information about the current strength of concrete. In the literature, it
is seen that the maturity is defined in a temperature-time related manner. This
is because strength gain depends on cement hydration, which is a chemical reac-
tion. The development of cement hydration is also related to the temperature at
which the concrete is cured and for how long. However, there are other param-
eters that affect cement hydration, which plays the leading role in determining
the strength of concrete.

2020 MSC: 00A71, 18D25

Keywords: Strength, Maturity, Hydration

Introduction
Different methods are used to determine the strength of concrete. The maturity

calculation is often used to evaluate the strength development of in-situ concrete.
The maturity method has been widely used to predict early age concrete strength.
However, conventional maturity models exhibit limited predictive ability for late con-
crete strength under thermal curing conditions due to the influence of the “crossover
effect” [7]. When the concept of maturity first flourished, it has been shown that if
the temperature gradient of the concrete after the mixing period does not exceed a
certain value, the concrete gains strength according to its “maturity" during and after
treatment, approximately in accordance with the same law that applies to normally
cured concrete [4]. The maturity method as originally proposed is still available today.
However, given the aforementioned situation, the maturity calculation needs to be re-
vised. Different scientists have conducted studies on this subject [2, 6, 8]. Quality
and safety assurance of concrete structures requires on-site monitoring of early-stage
compressive strength development. This is a requirement for all stakeholders involved.

Main results
Saul [4] proposed a single factor, “maturity", as an indicator of concrete strength

independent of the combination of temperature and time that constitutes maturity:

M =
∑
t

(T − To)∆t (1)

where M is the maturity (◦C.day), T is the average temperature over the time interval
∆t (◦C) (20 ◦C for standard curing), To is the reference temperature (◦C), ∆t is the
time interval (days).
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One of the most common equations for the strength-maturity relationship is the
following logarithmic equation proposed by Plowman [3].

S = a+ b ln(M) (2)

where S is the compressive strength and a and b are coefficients specific to the concrete
mixture.

It is possible to find studies in the literature that test the applicability of the above
relations in different material types and curing regimes and/or modify these relations
to be used in the strength development of concrete by considering some factors [1, 5].

Conclusion
Concrete is the most widely used material in the construction industry. Therefore,

it is important to determine the behavior of concrete used in structures. The most
important property of concrete that can be correlated with other properties is com-
pressive strength. Compressive strength also plays a role in the physical feauteures
and durability of concrete. In addition, knowing the early age compressive strength
development allows the timing of activities such as demolding to be adjusted. Ma-
turity correlations for the strength development of concrete have been proposed in
the past and continue to be proposed. In this study, when the parameters affecting
the strength development of concrete are taken into account, it is understood that
the basic maturity relation may be inadequate, and in such cases it is necessary to
modify this relation. However, the equations derived in studies are expected to meet
the compressive strength of all concrete types.
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A novel formulation of α-simplex and
α-MacDonald linear codes with practical

applications
Ouarda Haddouche ∗1 and Karima Chatouh 2

This research contributes to the understanding of linear α-simplex and α-
MacDonald Codes, their representations through Gray images, and their ap-
plications in multi-secret sharing schemes, thereby advancing the theoretical
foundations and practical implementations in the fields of coding theory and
information security.

2020 MSC: 94B05, 94B15, 94B35

Keywords: Simplex codes, MacDonald codes, Lineair codes, Gray map, Multi-
secret Sharing schemes

Introduction
In the realm of coding theory and information security, the investigation of Linear

α-Simplex and α-MacDonald Codes over the ring R = R1R2R3 has emerged as a
compelling area of study. This article delves into three interconnected and crucial
facets within this domain, each contributing to our understanding and application of
these codes.

The first part explores the mathematical foundations and properties of linear α-
Simplex and α-MacDonald Codes when defined over the ring R. Unveiling the in-
tricacies of these codes within the specified algebraic structure is fundamental to
comprehending their potential applications in coding theory.

The second part of this article explores the practical applications of Gray images of
linear α-Simplex and α-MacDonald codes in the realm of multi-secret sharing schemes.
Investigating how these codes can be effectively employed to enhance the security
and robustness of multi-secret sharing systems contributes to the broader field of
information security.

As we navigate through these interconnected sections, the goal is to provide a
comprehensive exploration of linear α-Simplex and α-MacDonald codes, ranging from
their theoretical underpinnings to practical applications in multi-secret sharing. This
multifaceted approach aims to contribute to the evolving landscape of coding theory
and secure information transmission, emphasizing the versatility and significance of
these codes in diverse contexts.

Preliminaries
A finite ring R is defined by the product of three commutative rings

R = (Zq + v1Zq) (Zq + v1Zq + v2Zq) (Zq + v1Zq + v2Zq + v3Zq) . (1)

182 Antalya, TURKEY



THE PROCEEDINGS BOOK OF GFSNP 2024

Each element in this ring is expressed as c = (c1|c2|c3), where c1 ∈ R1, c2 ∈ R2,
and c3 ∈ R3. According to (cf. [5, 6]), the components c1, c2, and c3 are represented
by

c1 =

(
1− v1

2

)
c01 +

(
1 + v1

2

)
c11, (2)

c2 =

(
1− v1

ξ1

)(
1− v2

ξ2

)
c02 +

v1

ξ1

(
c02 + ξ1c

1
2

)
+
v2

ξ2

(
c02 + ξ2c

2
2

)
, (3)

c3 =

3∏
i=1

(
1− vi

ξi

)
c03 +

v1

ξ1

(
c03 + ξ1c

1
3

)
+
v2

ξ2

(
c03 + ξ2c

2
3

)
+
v3

ξ3

(
c03 + ξ3c

3
3

)
. (4)

The elements µ0 =
1− v1

2
, µ1 =

1 + v1

2
, ν2

0 =
(

1− v1

ξ1

)(
1− v2

ξ2

)
,

ν3
0 =

3∏
i=1

(
1− vi

ξ i

)
, ν2

1 = ν3
1 =

v1

ξ 1

, ν2
2 = ν3

2 =
v2

ξ 2

and ν3
3 =

v3

ξ 3

form a fun-

damental system of idempotents of R1, R2 and R3 respectively.
We introduce the Gray map and Gray images for a linear code over the ring R

into Z72
q by defining the Gray map for each component ring. This Gray map, denoted

as Ψ, is defined as follows:

Ψ : R1R2R3 → Z72
q .

It is evident that this map can straightforwardly extend from Rn to Z72n
q . Conse-

quently, the following theorems holds.

Theorem 1. If C is a linear code over R of length n, then Φ(C) is a linear code with
parameters [72n, k, dH ].

The subsequent theorem provides a characterization of codes and their orthogo-
nality over the ring R = R1R2R3 with a length of n = 2n1 + 3n2 + 4n3.

Theorem 2. Let C and C⊥ is linear codes of length n = 2n1 + 3n2 + 4n3 over
R = R1R2R3, then

C =

 2⊕
i=0

 3⊕
j=0

µ0ν
2
i ν

3
jC

0
1C

i
2C

j
3

⊕
 2⊕
i=0

 3⊕
j=0

µ1ν
2
i ν

3
jC

1
1C

i
2C

j
3

 , (5)

and

C⊥ =

 2⊕
i=0

 3⊕
j=0

µ0ν
2
i ν

3
jC

0⊥
1 Ci⊥2 Cj⊥3

⊕
 2⊕
i=0

 3⊕
j=0

µ1ν
2
i ν

3
jC

1⊥
1 Ci⊥2 Cj⊥3

 .

Linear α-simplex and α-MacDonald codes over
R = R1R2R3

In the referenced works (cf. [2, 3, 4]), the authors have explored the construction
of simplex and MacDonald linear codes of type α characteristics across specific rings.
In this study, a novel representation of these codes over the ring R = R1R2R3 has
been established by utilizing the idempotent elements of this ring.
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Theorem 3. Let mα
k,R1

, Gαk,R2
and Gαk,R3

be generator matrices of linear α-simplex
codes over R1,R2 and R3 respectively. Then, the generator matrix Θα

k,R of linear
α-simplex codes over R as follows

Θα
k,R = q26µ0

 2⊕
i=0

 3⊕
j=0

ν2
i ν

3
j

[
σ0(mα

k,R1
)
] [
λij(G

α
k,R2

)
] [
γij(Gαk,R3

)
]

⊕
q26µ1

 2⊕
i=0

 3⊕
j=0

ν2
i ν

3
j

[
σ1(mα

k,R1
)
] [
λij(G

α
k,R2

)
] [
γij(Gαk,R3

)
] ,

such that σ0(mα
k,R1

), σ1(mα
k,R1

), λij(Gαk,R2
) and γij(Gαk,R3

), for 0 ≤ i ≤ 2 and 0 ≤
j ≤ 3 are equivalent matrices.

Proposition 4. A linear α-simplex code Sαk of length n = 2n1 + 3n2 + 4n3 over
R = R1R2R3, can be expressed by

Sαk = q26kµ0

[⊕2
i=0

[⊕3
j=0 ν

2
i ν

3
j

[
σ0(Sαk,R1

)
] [
λij(S

α
k,R2

)][γij(S
α
k,R3

)
]]]

⊕
q26kµ1

[⊕2
i=0

[⊕3
j=0 ν

2
i ν

3
j [σ1(Sαk,R1

)
[
λij(S

α
k,R2

)
] [
γij(S

α
k,R3

)
]]]

.

Additionally, the α-MacDonald codes over the ring R = R1R2R3 are presented
as follows:

Corollary 5. Let mα
k,u,R1

, Gαk,u,R2
and Gαk,u,R3

be the generator matrices of α-
MacDonald codes over R1,R2 and R3 respectively.Then, the generator matrix Θα

R,k,u

of α-MacDonald codes over R as follows

Θα
k,u,R = q26kµ0

 2⊕
i=0

 3⊕
j=0

ν2
i ν

3
j

[
σ0(mα

k,u,R1
)
] [
λij(G

α
k,u,R2

)
] [
γij(Gαk,u,R3

)
]

⊕
q26kµ1

 2⊕
i=0

 3⊕
j=0

ν2
i ν

3
j

[
σ1(mα

k,u,R1
)
] [
λij(G

α
k,u,R2

)
] [
γij(Gαk,u,R3

)
] ,

with σ0(mα
k,u,R1

), σ1(mα
k,u,R1

), λij(Gαk,u,R2
) and γij(Gαk,u,R3

), for 0 ≤ i ≤ 2 and
0 ≤ j ≤ 3 are equivalent matrices.

Corollary 6. A linear α-MacDonald code Mα
k of length n = 2n1 + 3n2 + 4n3 over

R = R1R2R3, can be expressed by

Mα
k = q26kµ0

[⊕2
i=0

[⊕3
j=0 ν

2
i ν

3
j

[
σ0(Mα

k,R1
)
] [
λij(Mα

k,R2
)
] [
γij(Mα

k,R3
)
]]]

⊕
q26µ1

[⊕2
i=0

[⊕3
j=0 ν

2
i ν

3
j

[
σ1(Mα

k,R1
)
] [
λij(Mα

k,R2
)
] [
γij(Mα

k,R3
)
]]]

.

Gray images of linear α-simplex and α-MacDonald
codes

Within the domain of coding theory, the investigation of gray images gains height-
ened significance, especially in the context of the linear α-simplex and α-MacDonald
codes. These codes embody intricate mathematical structures with versatile applica-
tions across various domains, including the realm of multi-secret sharing schemes.
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Theorem 7. Let Sαk be a linear α-simplex code of length n = 2n1 + 3n2 + 4n3 over
R, then

Φ(Sαk ) = q26
[⊗2

i=0

[⊗3
j=0(σ0(Sαk,Zq )λ

i
j(S

α
k,Zq )γ

i
j(S

α
k,Zq )

]]
⊗

q26
[⊗2

i=0

[⊗3
j=0 σ1(Sαk,Zq )λ

i
j(S

α
k,Zq )γ

i
j(S

α
k,Zq )

]]
,

is [72n, k, d]-linear α-simplex codes over Zq.

Corollary 8. The generator matrix of Φ(Θα
k,R) is a permutation equivalent of the

matrix

Φ(Θα
k,R) =

 q144k︷ ︸︸ ︷
Mα
k,ZqM

α
k,Zq . . .M

α
k,Zq

 ,
with Mα

k,Zq is a generator matrix of Sαk,Zq over Zq.

Theorem 9. Let Mα
k be a linear α-MacDonald code of length n = 2n1 + 3n2 + 4n3

over R, then

Φ(Mα
k ) = q26k

[⊗2
i=0

[⊗3
j=0(σ0(Mα

k,R1
)λij(Mα

k,R2
)γij(Mα

k,R3
)
]]

⊗
q26k

[⊗2
i=0

[⊗3
j=0(σ0(Mα

k,R1
)λij(Mα

k,R2
)γij(Mα

k,R3
)
]]
,

is [72n, k, d] linear α-MacDonald code over Zq.

Corollary 10. The generator matrix of Φ(Θk,R) is a permutation equivalent of the
matrix

Φ(Θα
k,u,R) =

 q144k︷ ︸︸ ︷
Mα
k,u,ZqM

α
k,u,Zq · · ·M

α
k,u,Zq

 , (6)

with Mα
k,u,Zq is a generator matrix ofMα

k,u,Zq over Zq.

Multi-secret sharing schemes based on α-Simplex and
α-MacDonald codes
• Minimal linear codes constitute a unique category of codes that find notable

applications in secret-sharing schemes and multi-secret sharing schemes.

• In our research, we make use of the Gray images of α-MacDonald subcodes over
R = R1R2R3 due to their inherent minimality. This choice leads us to employ
multi-secret sharing schemes as a consequence.

• According to (cf. [1]), we construct the Multi-secret sharing schemes based on
linear subcodes.

• We need an α-MacDonald subcode over Zq with a generator matrix Φ(Θα
k,R).

• To ensure the uniqueness of the solution to the linear system, it is imperative
that the code verifies C is LCD code if only if rank(G) = rank(GG>) =
rank(G>G) 6= 0 for matrix G.

• Let a codeword be the secret S = (s1, s2, . . . , sn) in Znq , where ST denotes the
transposition of S.
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• The rows {g1, g2 . . . , gn} of the generator matrix Φ(Θα
k,R) are minimal access

elements, and all elements of Φ(Θα
k,R) are participants in this scheme.

• The dealer, knowing the secret S, computes the share u of the user with attached
codeword c, by taking the scalar product of that codeword with the secret, i.e.,

u = 〈c, s〉 = c · ST . (7)

• Consider the system with the private secret S and the coalition corresponding
to the rows of Φ(Θα

k,R), we have

UT = Φ(Θα
k,R) · ST , (8)

where U = (u1, u2, . . . , uk), and ui is the share attached to the row i of Φ(Θα
k,u,R).

• The secret can then be calculated by solving the following linear system of n
equations and n unknowns:{

UT = Φ(Θα
k,R) · ST

0 = H(Θα
2,1,R) · ST . (9)

Example 11. Let R = (Z3 + v1Z3)(Z3 + v1Z3 + v2Z3)(Z3 + v1Z3 + v2Z3 + v3Z3). For
k = 2, a generator matrix of subcode of Φ

(
Mα

2,1,R

)
is given by

Φ(Θ′α2,1,R) =

[
1 1 2 2
1 2 1 2

]
=

[
g1

g2

]
,

and

rank(Φ(Θ′α2,1,R)) = rank(Φ(Θ′α2,1,R)>Φ(Θ′α2,1,R)) = rank(Φ(Θ′α2,1,R)Φ(Θ′α2,1,R)>) = 2,

the subcode Φ
(
M′α2,1,R

)
is LCD. The parity-check matrix H(Φ(Θ′α2,1,R)) of this subcode

is
H(Φ(Θ′α2,1,R)) =

[
1 0 0 1
0 1 1 0

]
=

[
y1

y2

]
. (10)

There are 9 codewords of Φ
(
M′α2,1,R

)
,

2001, 0210, 1122, 0120, 1002, 2211, 1212, 2121, 0000.

Now, we examine a Multi-secret sharing schemes based on Φ
(
M′α2,1,R

)
. Let the secret

vector be S = 2121. We calculate the shares as follows

u>1 =< 1122, 2121 >= 0
u>2 =< 1212, 2121 >= 2.

Moreover,

d>1 =< 1001, 2121 >= 0
d>2 =< 0110, 2121 >= 0.
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Using (9), we should solve the following linear system to recover the secret.
1 1 2 2
1 2 1 2
1 0 0 1
0 1 1 0



s1

s2

s3

s4

 =


0
2
0
0

 . (11)

According to (cf. [7, Theorem 6]), this system has a unique solution. So, we recove
the secret S = 2121.

Conclusion
In conclusion, the exploration of linear α-simplex and α-MacDonald Codes over

the algebraic structure R = R1R2R3 has unveiled a rich landscape of coding theory
with promising applications. Furthermore, the development of multi-secret sharing
schemes based on α-simplex and α-MacDonald Codes expands the horizons of secure
communication protocols.
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The spaces of multilinear multipliers

Öznur Kulak ∗1 and A. Turan Gürkanlı 2

In this paper, we define the multilinear multipliers of the function space
Ap,qw,ω (R) that was defined and investigated by R. H. Fischer, A. T. Gürkanli and
T. S. Liu. Then we investigate properties of the these multipliers. Furthermore,
we give some examples for multilinear multipliers.
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Keywords: Multilinear multipliers, Weighted Lebesgue space

Introduction
Throughout this paper we will work on Rn with Lebesgue measure dx. We will

denote by Cc (Rn) and C∞c (Rn) the space of all continuous, complex-valued functions
with compact support on Rn and the space of infinitely differentiable complex-valued
functions with compact support on Rn respectively. Also we will denote by S (Rn) the
Schwartz class of functions. In this work we will use the Beurling weight functions,
i.e., real valued, measurable and locally bounded functions w on Rn which satisfy
w (x) ≥ 1 and w (x+ y) ≤ w (x)w (y) for all x, y ∈ Rd. For 1 ≤ p < ∞, the spaces
Lpw (Rn) are the weighted Lebesgue spaces on Rn. It is a Banach space under the norm
‖f‖p,w = ‖fw‖p . Moreover, L1

w (Rn) is a Banach convolution algebra. It is called a
Beurling algebra, [3, 10]. A weight function vs is of polynomial type if

vs (x) = (1 + |x|)s

for s ≥ 0. A weight function w is said to satisfy the Beurling- Domar condition
(shortly BD) if one has

∞∑
n=0

logw (nx)

n2
<∞, ∀x ∈ Rn, (1)

(cf. [2, 9]).
As an example the polynomial type weight function vs (x) satisfies the BD-condition,

[12] . The Fourier transform f̂ of a function f ∈ L1 (Rn) is defined by

f̂ (t) =

∫
Rn

f (x) e−2πi〈x,t〉dx,

where 〈x, t〉 =
n∑
i=1

xiti be the usual scalar product on Rn. It is known that f̂ ∈ C0 (Rn) ,

where C0 (Rn) denotes the space of complex-valued continuous functions on Rn that
vanish at infinity. For a Borel measure µ we denote by

µ̂ (ξ) =

∫
Rn
e−2πi〈ξ,x〉dµ (x)
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its Fourier transform. Also we denote by M (w) , the set of Borel measures µ for
which ∫

Rn
wd |µ| (x) <∞,

(cf. [5]).
Let 1 ≤ p, q <∞ and w,ω be weight functions on Rn. We set

Ap,qw,ω (Rn) =
{
f ∈ Lpw (Rn) | f̂ ∈ Lqw (Rn)

}
(2)

and equip this space with the norm∥∥f | Ap,qw,ω (Rn)
∥∥ = ‖f‖p,w +

∥∥∥f̂∥∥∥
q,ω

, (3)

where (∧. ) is the generalized Fourier transform (cf. [4]).
This space was defined and investigated by R. H. Fischer, A. T. Gürkanlı and T.

S. Liu [4]. It is known that Ap,qw,ω (Rn) is a Banach space, if the first weight w satis-
fies (BD), then Ap,qw,ω (Rn) admits an approximate identity (shortly AI) bounded in
L1
w (Rn) and with compactly supported Fourier transforms, and furthermoreAp,qw,ω (Rn)

is an essential Banach module over L1
w (Rn), [4]. It is also known by Proposition 1.13

in [4] that if the weight function w on Rn satisfies the condition (BD) , then the set

Λpw =
{
f ∈ Lpw (Rn) | suppf̂ is compact

}
(4)

is dense in Ap,qw,ω (Rn) .
The bounded function m (ξ, η) defined on Rn×Rn is said to be bilinear multiplier

on Rn of type (p1, p2, p3) if

Bm (f, g) (x) =

∫
Rn

∫
Rn
f̂ (ξ) ĝ (η)m (ξ, η) e2πi〈ξ+η,x〉dξdη, (5)

defines a bounded bilinear operator from Lp1 (Rn)×Lp2 (Rn) to Lp3 (Rn) . The study
of bilinear multipliers goes back to the work Coifman and Meyer in [1]. The some
results were extended by Grafakos and Torres [6]. Kulak and Gürkanlı extended these
results to weighted Lebesgue and variable exponent Lebesgue spaces [8].

Main results
In this Section we define the bilinear multipliers from Ap1,q1

w1,ω1
(R)×· · ·×Apd,qdwd,ωd

(R)

into Apd+1,qd+1
wd+1,ωd+1 (R), and investigate some properties of the space of these multilinear

multipliers. Throughout this work we will assume that wi (i = 1, . . . , d) satisfy
Beurling Domar (BD) condition.

Definition 1. Let 1 ≤ pi, qi, ri <∞ and wi, ωi (i = 1, . . . , d+ 1) be weight functions
on R. Assume that m(ξ1, . . . , ξd) is locally integrable function on Rd. Define

Bm(f1, . . . , fd)(x) =

∫
Rd

f̂1(ξ1), . . . , f̂d(ξd)m(ξ1, . . . , ξd)e
2πi〈ξ1+···+ξd,x〉dξ1 . . . dξd (6)

for all fi ∈ Λpiwi , (i = 1, . . . , d). m is said to be bilinear multiplier on R of type
A (F ) (pi, qi, wi, vi) (shortly A (F )), if there exists C > 0 such that

‖Bm(f1, . . . , fd)‖Apd+1,qd+1
wd+1,ωd+1

≤ C
d∏
i=1

‖fi‖Api,qiwi,ωi
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for all fi ∈ Λpiwi , (i = 1, . . . , d). That means Bm extends to a bounded multilinear oper-
ator from Ap1,q1

w1,ω1
(R)×· · ·×Apd,qdwd,ωd

(R) into Apd+1,qd+1
wd+1,ωd+1 (R). BM [A (F ) (pi, qi, wi, vi)]

(shortly BM [A (F )]) denotes the space of all multilinear multipliers of type A (F ) (pi, qi, wi, vi).
We denote by

‖m‖A(F ) = ‖Bm‖

= sup


‖Bm(f1, . . . , fd)‖Apd+1,qd+1

wd+1,ωd+1

d∏
i=1

‖fi‖Api,qiwi,ωi

: ‖fi‖Api,qiwi,ωi
≤ 1 (i = 1, . . . , d)

 .

Lemma 2 (Hölder Type Inequality ). Assume that w <
d∏
i=1

wi and ω <
d∏
i=1

ωi. If

one has the equalities 1
p1

+ · · · + 1
pd

= 1
p and 1

q1
+ · · · + 1

qd
− (d− 1) = 1

q , then the
following inequality holds ∥∥∥∥∥

d∏
i=1

fi

∥∥∥∥∥
A
p,q
w,ω

≤
d∏
i=1

‖fi‖Api,qiwi,ωi
,

where fi ∈ Api,qiwi,ωi (R), (i = 1, . . . , d).

Proof. Let fi ∈ Api,qiwi,ωi (R) (i = 1, . . . , d). It’s known that the equality(
d∏
i=1

fi

)ˆ

= f̂1 ∗ · · · ∗ f̂d.

From the this equality, generalized Hölder inequaltiy and Young inequality, we have∥∥∥∥∥
d∏
i=1

fi

∥∥∥∥∥
A
p,q
w,ω

=

∥∥∥∥∥
d∏
i=1

fi

∥∥∥∥∥
p,w

+

∥∥∥∥∥∥
(

d∏
i=1

fi

)ˆ
∥∥∥∥∥∥
q,ω

≤
d∏
i=1

‖fi‖p,w +
∥∥∥f̂1 ∗ · · · ∗ f̂d

∥∥∥
q,ω

≤
d∏
i=1

‖fi‖pi,w +

d∏
i=1

∥∥∥f̂i∥∥∥
qi,ω

.

d∏
i=1

‖fi‖pi,wi +

d∏
i=1

∥∥∥f̂i∥∥∥
qi,ωi

≤
d∏
i=1

‖fi‖Api,qiwi,ωi
.

Proposition 3. Let 1
p1

+ · · ·+ 1
pd

= 1
pd+1

and 1
q1

+ · · ·+ 1
qd
− (d− 1) = 1

qd+1
, and let

wi (i = 2, . . . , d) be symmetric weight functions on R. Assume that wd+1 <
d∏
i=1

wi and

ωd+1 <
d∏
i=1

ωi and w =
d∏
i=1

wi. If K ∈ L1
w (R), then m(ξ1, . . . , ξd) =

ˆ

K(ξ1−ξ2−· · ·−ξd)

defines a multilinear multiplier and

‖m‖A(F ) ≤ ‖K‖1,w .
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Proof. For fi ∈ Λpiwi , (i = 1, . . . , d), we know that

Bm(f1, . . . , fd)(x) =

∫
R

f1(x− y)f2(x+ y) . . . fd(x+ y)K(y)dy . (7)

Then by (7)

‖Bm(f1, . . . , fd)‖Apd+1,qd+1
wd+1,ωd+1

≤
∫
R

‖Tyf1T−yf2 . . . T−yfdK(y)‖
A
pd+1,qd+1
wd+1,ωd+1

dy

=

∫
R

‖Tyf1T−yf2 . . . T−yfd‖Apd+1,qd+1
wd+1,ωd+1

|K(y)| dy

=

∫
R

∥∥∥∥∥Tyf1

d∏
i=2

T−yfi

∥∥∥∥∥
A
pd+1,qd+1
wd+1,ωd+1

|K(y)| dy. (8)

Using Lemma 2, the inequality (8) and the hypothesis we have

‖Bm(f1, . . . , fd)‖Apd+1,qd+1
wd+1,ωd+1

≤
∫
R

‖Tyf1‖Ap1,q1
w1,ω1

d∏
i=2

‖T−yfi‖Api,qiwi,ωi
|K(y)| dy

=

∫
R

(
‖Tyf1‖pi,w1

+
∥∥∥(Tyf1)

ˆ
∥∥∥
qi,ω1

)

×
d∏
i=2

(
‖T−yfi‖pi,wi +

∥∥∥(T−yfi)
ˆ
∥∥∥
qi,ωi

)
|K(y)| dy

=

∫
R

(
w1 (y) ‖f1‖pi,w1

+
∥∥∥(Tyf1)

ˆ
∥∥∥
qi,ω1

)

×
d∏
i=2

(
wi (−y) ‖fi‖pi,wi +

∥∥∥(T−yfi)
ˆ
∥∥∥
qi,ωi

)
|K(y)| dy

=

∫
R

(
w1 (y) ‖f1‖pi,w1

+
∥∥∥My f̂1

∥∥∥
qi,ω1

)

×
d∏
i=2

(
wi (−y) ‖fi‖pi,w +

∥∥∥M−y f̂i∥∥∥
qi,ωi

)
|K(y)| dy

=

∫
R

(
w1 (y) ‖f1‖pi,w1

+
∥∥∥f̂1

∥∥∥
qi,ω1

)

×
d∏
i=2

(
wi (y) ‖fi‖pi,w +

∥∥∥f̂i∥∥∥
qi,ωi

)
|K(y)| dy

≤
∫
R

(
w1 (y) ‖f1‖pi,w1

+ w1 (y)
∥∥∥f̂1

∥∥∥
qi,ω1

)

×
d∏
i=2

(
wi (y) ‖fi‖pi,w + wi (y)

∥∥∥f̂i∥∥∥
qi,ωi

)
|K(y)| dy

=

d∏
i=1

‖fi‖Api,qiwi,ωi

∫
R

|K(y)|
d∏
i=1

wi (y) dy =

d∏
i=1

‖fi‖Api,qiwi,ωi
‖K‖1,w . (9)
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Finally by (9), we obtain

‖m‖A(F ) ≤ ‖K‖1,w .

This completes the proof.

This theorem motivates us restrict ourselves to the following special classes of
multilinear multipliers.

Definition 4. Let 1 ≤ pi, qi <∞ and ωi,vi (i = 1, . . . , d+1) be weight functions on R.
We denote by M̃ [A (F ) (pi, qi, wi, ωi)] the space of measurable functions M : R → C
such that m(ξ1, . . . , ξd) = M(ξ1 − ξ2 − · · · − ξd) ∈ M̃ [A (F ) (pi, qi, wi, ωi)], that is to
say

Bm(f1, . . . , fd)(x) =∫
Rd

f̂1(ξ1) . . . f̂d(ξd)M(ξ1 − ξ2 − · · · − ξd)e2πi〈ξ1+···+ξd〉dξ1 . . . dξd

extends to a bounded bilinear map from Ap1,q1
w1,ω1

(R)×· · ·×Apd,qdwd,ωd
(R) to Apd+1,qd+1

wd+1,ωd+1 (R) .
We denote ‖M‖A(F ) = ‖BM‖ .

Now we will give an example of multilinear multiplier.

Proposition 5. Let 1
p1

+ · · · + 1
pd

= 1
pd+1

, 1
q1

+ · · · + 1
qd
− (d− 1) = 1

qd+1
, and

let wd+1 <
d∏
i=1

wi, ωd+1 <
d∏
i=1

ωi. Assume that µ ∈ M (v) and wi (αx) ≤ |α|wi (x) ,

(i = 1, . . . , d) for all α ∈ R. Then m(ξ1, . . . , ξd) = µ̂(α1ξ1 + · · · + αdξd) for αi ∈ R
(i = 1, . . . , d) defines a multilinear multiplier and

‖m‖A(F ) ≤ C ‖µ‖M(v) ,

where C =
d∏
i=1

|αi|.

Proof. First we write the following equality by

Bm(f1, . . . , fd)(x) =

∫
R

f1(x− α1t) . . . fd(x− αdt)dµ(t), (10)

for any fi ∈ Λpiwi (i = 1, . . . , d). By using (10) and Lemma 2

‖Bm(f1, . . . , fd)‖Apd+1,qd+1
wd+1,ωd+1

=

∥∥∥∥∥∥
∫
R

f1(x− α1t) . . . fd(x− αdt)dµ(t)

∥∥∥∥∥∥
A
pd+1,qd+1
wd+1,ωd+1

≤
∫
R

‖f1(x− α1t) . . . fd(x− αdt)‖Apd+1,qd+1
wd+1,ωd+1

d |µ| (t) .

∫
R

d∏
i=1

‖Tαitfi‖Api,qiwi,ωi
d |µ| (t) . (11)
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Then we have

‖Tαitfi‖Api,qiwi,ωi
= ‖Tαitfi‖pi,wi +

∥∥∥(Tαitfi)
ˆ
∥∥∥
qi,ωi

≤ wi (αit) ‖fi‖pi,wi + wi (αit)
∥∥∥Mαitf̂i

∥∥∥
qi,ωi

≤ |αi|wi (t)

(
‖fi‖pi,wi +

∥∥∥f̂i∥∥∥
qi,ωi

)
= |αi|wi (t) ‖fi‖Api,qiwi,ωi

for i = 1, . . . , d. So combining the inequalities (10) and (11),

‖Bm(f1, . . . , fd)‖Apd+1,qd+1
wd+1,ωd+1

≤
∫
R

d∏
i=1

|αi|wi (t) ‖fi‖Api,qiwi,ωi
d |µ| (t)

=

d∏
i=1

|αi| ‖fi‖Api,qiwi,ωi

∫
R

d∏
i=1

wi (t) d |µ| (t) =

d∏
i=1

|αi| ‖fi‖Api,qiwi,ωi

∫
R

v (t) d |µ| (t)

=

d∏
i=1

|αi| ‖fi‖Api,qiwi,ωi

∫
R

v (t) d |µ| (t) =

d∏
i=1

|αi| ‖fi‖Api,qiwi,ωi
‖µ‖M(v)

= C ‖µ‖M(v)

d∏
i=1

‖fi‖Api,qiwi,ωi
,

where C =
d∏
i=1

|αi|. This implies

‖Bm‖ = ‖m‖A(F ) ≤ C ‖µ‖M(v) .
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New type of q-Bernstein operators
Pembe Sabancıgil

Bernstein polynomials have a significant role in approximation theory and
also in the other fields of mathematics. With the rapid development of q-
calculus, Bernstein polynomials based on the q-integers were firstly introduced
by Lupas [2] in 1987 and another generalization of Bernstein polynomials based
on the q-integers was introduced by Phillips [5] in 1996. The q-Bernstein poly-
nomials quickly gained the popularity and then many operators based on the
q-integers were introduced and examined by some other authors. First of all, we
give some notations and definitions of q-calculus. For any non-negative integer
n, the q-integer of the number n is defined by

[n]q =

{
1−qn
1−q if q 6= 1

n if q = 1
where q is a positive real number.

The q-factorial is defined by

[n]q! = [1]q [2]q ... [n]q and [0]q! = 1.

For integers 0 ≤ k ≤ n, the q-binomial is defined by

[
n
k

]
q

=


[n]q !

[k]q ![n−k]q !
if q 6= 1(

n
k

)
if q = 1

.

In the present study, we introduce a new type of Bernstein operators based on
the q-integers as follows:

Let 0 < q < 1 and n ∈ N. For f : [0, 1]→ R and x ∈ (0, 1)

B∗n,q(f ;x) =
[n]q

x(1− x)

n∑
k=0

pn,k (q, x) f

(
[k]q
[n]q

)(
[k]q
[n]q
− x

)2

,

where pn,k (q, x) = xk
n−k−1∏
j=0

(1− qjx)

[
n
k

]
q

.

We calculate the moments of these operators, B∗n,q(t
j ;x) for

j = 0, 1, 2 and the second order central moment B∗n,q((t − x)2;x). We estimate
the rate of convergence for continuous functions. Furthermore, we prove a local
approximation theorem in terms of second modulus of continuity, we obtain a
local direct estimate for the new type q-Bernstein operators in terms of Lipschitz
type maximal function of order β and we prove a direct global approximation
theorem by using the Ditzian-Totik modulus of second order.
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Results on some Sheffer polynomials
Rahime Dere

In this study, we investigate the Narumi polynomials and the Pidduck poly-
nomials belonging to the family of the Sheffer polynomials. We give some prop-
erties of these polynomials by using by using the methods of the umbral calculus.

2020 MSC: 05A40, 11B83, 05A15

Keywords: Umbral calculus, Sheffer polynomials, Narumi polynomials, Pidduck
polynomials, Generating functions

Introduction
Throughout of this paper, we can use the following notations and definitions,

which are given by Roman [9, pp. 1-125].
Let P be the algebra of polynomials in the single variable x over the field complex

numbers. Let P ∗ be the vector space of all linear functionals on P . Let 〈L | p(x)〉 be
the action of a linear functional L on a polynomial p(x). Let F denote the algebra of
formal power series

f (t) =

∞∑
k=0

a
k

k!
tk.

Such algebra is called an umbral algebra. Each f ∈ Fdefines a linear functional
on P and

ak =
〈
f (t) | xk

〉
for all k > 0.

The order o (f (t)) of a power series f (t) is the smallest integer k for which the
coefficient of tk does not vanish. A series f (t) for which o (f (t)) = 1 will be called a
delta series. When we are considering a delta series f (t) in F as a linear functional
we will refer to it as a delta functional.

It is well-known that
〈
tk | xn

〉
= n!δn,k where δ denotes Kronecker symbol. For

all f (t) in F

f (t) =

∞∑
k=0

〈
f (t) | xk

〉
k!

tk.

By a sequence sn (x) of polynomials we shall imply that deg sn (x) = n.

Theorem 1 (cf. [9, Theorem 2.3.6, p. 20]). Let f (t) be a delta series and let g (t)
be an invertible series. Then there exist a unique sequence sn (x) of polynomials
satisfying the orthogonality conditions〈

g(t)f(t)k | sn(x)
〉

= n!δn,k

for all n, k ≥ 0.
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The sequence sn(x) in (3) is the Sheffer polynomials for pair (g(t), f(t)), where
g(t) must be invertible and f(t) must be delta series.

The Sheffer polynomials for pair (g(t), t) is the Appell polynomials or Appell
sequences for g(t). The Sheffer polynomials for pair (1, f(t)) is the associated sequence
for f(t) and sn(x) is associated to f(t).

The generating function of Sheffer polynomials is

1

g
(
f (t)

)eyf(t) =

∞∑
k=0

Sk (y)

k!
tk, (1)

where f (t) is the compositional inverse of f(t).
The Sheffer polynomials satisfy the following relations:

sn (x) = g(t)−1pn (x) , (2)

f (t)Sn (x) = nSn−1 (x) , (3)

sn (x+ y) =

n∑
k=0

(
n

k

)
pn−k (y) , (4)

where pn (x) is associated to f (t).
Let be p (x) ∈ P then, operator eyt satisfy following property:

eytp (x) = p (x+ y) (5)

(cf. [9]).
The Narumi polynomials Nn (x) are Sheffer for the pair

g (t) =
et − 1

t
,

f (t) = et − 1.

(cf. [2, 7, 9] and [8]).
The Pidduck polynomials Pn (x) are Sheffer for the pair

g (t) =
2

et + 1
,

f (t) =
et − 1

et + 1
,

(cf. [2, 7, 9] and [8]).
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Capacity solutions for nonlinear
parabolic-elliptic systems with degenerate

conductivities
Rabab Elarabi

In this work, we investigate the existence of a capacity solution for a coupled
parabolic-elliptic system. This system describes the evolution of temperature
u and electric potential ϕ in a semiconductor material. The equations involve
nonlinearity g, a divergence constraint on ϕ, and specific boundary and initial
conditions. We apply this study to generalized Orlicz spaces, which may not be
reflexive. The nonlinearity g adheres to natural growth and sign conditions.
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Eta Dedekind functions associated to
Legendre symbols

Abdelmejid Bayad 1 and Sofiane Atmani ∗2

Let

η (τ) = q
1
24

∞∏
n=1

(1− qn) , q = exp (2πiτ) , Im (τ) > 0

be the Dedekind eta-function. Let p be a rational prime number. Then the
Fourier coe cients of the eta product η (pτ)p /η (τ) are non-negative.

For p an odd prime define

χp (m) =

(
m

p

)
(the Legendre symbol).

Suppose k is an integer, k ≥ 2, and (p− 1) /2 ≡ k (mod2). Define the Eisenstein
series

Ep,k (q) :=

∞∑
m=1

∞∑
n=1

χp (m)nk−1qmn.

Then Ep,k is a modular form of weight k and character χp for the congruence
subgroup Γ0 (p). See [8, 10] for more details.

For any prime p, in this talk we are interested by the connection between
the Eisenstein series Ep,k (q) and the modulra forms η (pτ)p /η (τ).

Among others, our motivation comes from the following identity found by
Ramanujan:

U5,2 =
η (5τ)5

η (τ)
=

∞∑
m=1

∞∑
n=1

χ5 (m)nqmn.

Kolberg [10] has found many relations between such Eisenstein series and certain
eta products. The eta function η (τ) is a modular form of weight 1

2
. Hence the

modular forms
η (5τ)5

η (τ)
,

η (τ)5

η (5τ)

are modular forms of weight 2, on Γ0 (p) with character
(
.
5

)
. We have the

important relation

E5,6 (q) = η (5τ)3 η (τ)9 + 40η (5τ)9 η (τ)3 + 335
η (5τ)15

η (τ)3

=

∞∑
m=1

∞∑
n=1

χ5 (m)n5qmn.

Incidentaly, this study has many consequence on the problem of the Ramanujan
congruences modulo power of primes for various partitions functions.
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Probabilistic Lah numbers and Lah-Bell
polynomials

Siqi Dong ∗1, Yuankui Ma 2, Taekyun Kim 3 and Dae San Kim 4

Let Y be a random variable whose moment generating function exists in
some neighborhood of the origin. We study the probabilistic Lah numbers as-
sociated with Y and the probabilistic Lah-Bell polynomials associated with Y ,
as probabilistic versions of the Lah numbers and the Lah-Bell polynomials, re-
spectively. We derive some properties, explicit expressions, recurrence relations
and certain identities for those numbers and polynomials. In addition, we treat
the special cases that Y is the Poisson random variable with parameter α > 0
and the Bernoulli random variable with probability of success p.
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QSPR investigation of certain molecular
descriptor and monocarbolic acids

Sushmitha Jain ∗1 and Veerabhadraiah Lokesha 2

The analysis of QSPR contributes a substantial structural intuition into
the physio-chemical properties of monocarbolic acids. This investigates some
physio-chemical properties of monocarbolic acids and elaborate a QSPR model
using few topological indices and monocarbolic acids. Here we analyze how
extent the topological indices are connected to the physio-chemical properties of
monocarbolic acids. Therefore, we compute analytically the topological indices
of monocarbolic acids and plot the graphs between each of these topological
indices to the properties of monocarbolic acids. This QSPR model reveal a
close correlation between heavy atomic count, complexity index of refraction
and molecular weight of monocarbolic acids with some of the most successful
topological indices.
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Generalized type 2 degenerate the
Euler-Genocchi polynomials

Si-Hyeon Lee

Recently, Kim-Kim-Kim introduced generalized degenerate Euler-Genocchi
polynomials. From this idea we consider generalized type 2 Euler-Genocchi
polynomials as a degenerate version. In this paper, we study some properties
and identities of the generalized type 2 degenerate Euler-Genocchi polynomials.
In addition, it was expressed as an equation using the Fermionic integral.
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Exploring λ-Sheffer sequences:
Representations and transformations within

λ-umbral calculus
Seongho Park

This paper presents a study on the representation of λ-Sheffer polynomials
through other λ-Sheffer polynomials. Building upon recent advancements in
λ-umbral calculus, we explore the process of substituting the traditional expo-
nential function with a degenerate exponential function in the generating func-
tions of Sheffer polynomials. Through this approach, we derive new methods to
represent λ-Sheffer polynomials using other λ-Sheffer polynomials. Utilizing for-
mulas derived from the definition of λ-Sheffer polynomials, this work elucidates
the relationships among these polynomials and provides a deeper analysis of the
properties of degenerate polynomials and sequences. This research deepens the
understanding of λ-umbral calculus and offers new perspectives on the theory
and applications of degenerate polynomials.
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Some explicit formulae involving Hardy sums
Mu Yaya 1 and Zhang Tianping ∗1,2

Various properties of the Hardy sums were investigated by many authors.
One aim of this paper is to present a method that can remedy the previous flaws
(for example, [Some identities involving certain Hardy sum and Kloosterman
sum, Journal of Number Theory, 2016; New identities involving Hardy sums
S3(h, k) and general Kloosterman sums, AIMS Mathematics, 2021; Some novel
identities for analogues of Dedekind sums, Hurwitz zeta-function and general
Kloosterman sum, Acta Mathematica Hungarica, 2022]), in studying the hybrid
sums involving various Hardy sums and general Kloosterman sums. Another
one is to answer a question previously posed in [New identities involving Hardy
sums S3(h, k) and general Kloosterman sums, AIMS Mathematics, 2021]. By
overcoming some technical obstacles, several explicit formulae are given. This
is a joint work with Yaya Mu.
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The new type degenerate Fubini polynomials
Uitae Pyo

Recently, T. Kim has investigated degenerate Fubini polynomials, reveal-
ing various theorems and diverse relationships with Euler polynomials. In this
paper, we extend the exploration of properties associated with additional degen-
erate Fubini polynomials. We introduce new types of degenerate Fubini poly-
nomials and examine their properties. Additionally, we will explore properties
related to Bernoulli polynomials and estimate polynomial values by substituting
specific values.
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The moment generating function related to
Bell polynomials

Uitae Pyo

In this paper, an investigation has been conducted on the moment functions
of various probability variables concerning the recently studied exponential λ-
analogue. Using degenerate polynomials, generalized expressions for the mean
and variance were derived and directly computed. Additionally, by leverag-
ing Stirling numbers and Bell polynomials, connections with Poisson random
variables were explored. Furthermore, meaningful results were obtained using
covariance analysis. Moreover, we utilized these results to define a new form
of Bell polynomials. We anticipate that investigating the properties of these
polynomials in future research will yield new and valuable results.
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A study on the generalized degenerate
multi-Bernoulli polynomials

Wonjoo Kim ∗1 and Jongkyum Kwon 2

Recenerately, Kim-Kim-Kim (2022) studied the degenerate multi-Euler-Genocchi
polynomials as degenerate versions of some special polynomials. In this pa-
per, we consider the multi-Bernoulli polynomials, generalized degenerate multi-
Bernoulli polynomials and investigate some identities and properties of them.
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On the Dedekind sums and its a new
reciprocity formula

Wenpeng Zhang

To describe the results of this paper, we first need to introduce the definition
of the Dedekind sums S(r, q). For any integers q ≥ 2 and r, the classical
Dedekind sums S(r, q) is defined as follows (see [2]):

S(r, q) =

q∑
c=1

((
c

q

))((
rc

q

))
,

where as usual, ((u)) is defined as

((u)) =

{
u− [u]− 1

2
, if u is not an integer;

0, if u is an integer.

Usually, we know that S(r, q) describes the behaviour of the logarithm of the
eta-function (see [15] and [16]) under modular transformations. Since the im-
portance of S(r, q) in analytic number theory, many authors have studied the
various arithmetical properties of S(r, q), and obtained a series of interesting re-
sults, some of them can be found in the references [3]- [12]. It is worth mentioning
that perhaps the most important property of S(r, q) is its reciprocity theorem
(see [2, 3, 13]). That is, for any positive integers u and v with (u, v) = 1, one
has the identity

S(u, v) + S(v, u) =
u2 + v2 + 1

12uv
− 1

4
. (1)

H. Rademacher and E. Grosswald [16] also obtained a three-term formula similar
to (1).

The main purpose of this paper is using the analytic methods and the prop-
erties of Dirichlet L-functions to study the properties of S(r, q), and give a new
reciprocity formula for it. That is, we will prove the following three conclusions.

Theorem 1. Let h and q be two positive odd numbers with (h, q) = 1. Then we
have the reciprocity formula

S
(
2q, h

)
+ S

(
2h, q

)
=
h2 + q2 + 4

24hq
− 1

4
,

where 2 in S
(
2h, q

)
and S

(
2q, h

)
are q+1

2
and h+1

2
, respectively.

As an application of Theorem 1, we can also deduce a new calculating for-
mula for the mean square value of Dirichlet L-functions with the weight of the
character sums. That is, we have

Theorem 2. For any positive integer q > 1 and (q, 6) = 1, we have the identities∑
χ mod q

χ(−1)=−1

χ(3) · χ(2) · |L(1, χ)|2

=
π2

18
· φ

2(q)

q2
·

 q
4
·
∏
p|q

(
1 +

1

p

)
− 9

2
+
( q

3

)
·
∏
p|q

p−
(
p
3

)
p− 1

 ,
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where
∑

χ mod q

χ(−1)=−1

denotes the summation over all odd characters modulo q, L(s, χ)

denotes the Dirichlet L-function corresponding to character χ mod q, φ(q) is the
Euler function,

∏
p|q

denotes the product over all distinct prime divisors of q, and( ∗
3

)
is the Legendre’s symbol modulo 3.

Theorem 3. For any positive integer q > 1 with (q, 6) = 1, we have the identity

∑
χ mod q

χ(−1)=1

|L(1, χλ3)|2 =
π2

27
· φ

2(q)

q2

2q ·
∏
p|q

(
1 +

1

p

)
−
( q

3

)
·
∏
p|q

p−
(
p
3

)
p− 1

 ,
where

∑
χ mod q

χ(−1)=1

denotes the summation over all even characters modulo q, and

λ3 =
( ∗

3

)
denotes the Legendre’s symbol modulo 3.

Some notes: It is clear that replacing 3 with 5 or 7 in Theorem 2 we can
also get some similar results, but the situation is more complicated and we do
not list them.

From the reciprocity formula (1) and the Lemma 2 in [20] we may immedi-
ately deduce that for any two distinct odd primes p and q, one has the identity

q

q − 1

∑
χ mod q

χ(−1)=−1

χ(p) · |L(1, χ)|2 +
p

p− 1

∑
χ mod p

χ(−1)=−1

χ(q) · |L(1, χ)|2

=
π2

12
· p

2 + q2 − 3pq + 1

pq
. (2)

Whether there exists a direct proof of (2) (only use the properties of Dirichlet
L-function, the reciprocity formula (1) can not be used) is an open problem.

In addition, Theorem 3 is an interesting result. In fact, for the mean square
value of Dirichlet L-functions with even characters at point s = 1, there are so
far only various asymptotic formulas, without any exact identities. Theorem 3
gives an exact calculating formula for it, just by turning all characters χ with
χ(−1) = 1 into χλ with χλ(−1) = −1.
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Probabilistic degenerate Fubini polynomials
associated with random variables

Yuankui Ma ∗1, Rongrong Xu 2, Taekyun Kim 3 and Dae San Kim 4

Let Y be a random variable such that the moment generating function of Y
exists in a neighborhood of the origin. The aim of this paper is to study proba-
bilistic versions of the degenerate Fubini polynomials and the degenerate Fubini
polynomials of order r, namely the probabilisitc degenerate Fubini polynomials
associated with Y and the probabilistic degenerate Fubini polynomials of order
r associated with Y . We derive some properties, explicit expressions, certain
identities and recurrence relations for those polynomials. As special cases of Y ,
we treat the gamma random variable with parameters α, β > 0, the Poisson
random variable with parameter α > 0, and the Bernoulli random variable with
probability of success p.
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To derive a moment inequality involving
stochastic integrals using a Gronwall-type

inequality
Young-Ho Kim

The main purpose of this presentation is to discuss the Itô formula for the
stochastic process and the application of the Gronwall-type inequality to induce
the moment inequality of the Itô integral. More specifically, we want to estab-
lish some stochastic moment inequalities in the stochastic process by applying
the Itô formula and the Gronwall-type inequalities as well as introduce a new
proofs of some parts of the Burkholder-Davis-Gundy inequality and induce in-
verse inequality. Next, we will discuss the importance of moment inequality
by introducing a theory that applies these results to the existence theorem of
solutions of stochastic differential equations.
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